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Syntax-guided synthesis has been a prevalent theme in various computer-aided programming systems.
However, the domain of bit-vector synthesis poses several unique challenges that have not yet been sufficiently
addressed and resolved. In this paper, we propose a novel synthesis approach that incorporates a distinct
enumeration strategy based on various factors. Technically, this approach weighs in subexpression recurrence
by term-graph-based enumeration, avoids useless candidates by example-guided filtration, prioritizes valuable
components identified by large language models. This approach also incorporates a bottom-up deduction
step to enhance the enumeration algorithm by considering subproblems that contribute to the deductive
resolution. We implement all the enhanced enumeration techniques in our SyGuS solver DryadSynth, which
outperforms state-of-the-art solvers in terms of the number of solved problems, execution time, and solution
size. Notably, DryadSynth successfully solved 31 synthesis problems for the first time, including 5 renowned
Hacker’s Delight problems.

CCS Concepts: • Software and its engineering→ Automatic programming; Formal methods; • Theory
of computation→ Automated reasoning; • Mathematics of computing→ Graph enumeration.

Additional Key Words and Phrases: Syntax-guided synthesis, Bit vector, Term graph, Enumeration, Large
language model

ACM Reference Format:
Yuantian Ding and Xiaokang Qiu. 2024. Enhanced Enumeration Techniques for Syntax-Guided Synthesis
of Bit-Vector Manipulations. Proc. ACM Program. Lang. 8, POPL, Article 71 (January 2024), 31 pages. https:
//doi.org/10.1145/3632913

1 INTRODUCTION
The methodology of Syntax-Guided Synthesis (SyGuS) conceptualizes the process of program
synthesis as a computational endeavor, wherein the objective is to discover a program expression
that satisfies both syntactic and logical constraints. Inspired by other solver competitions which
have catalyzed the plethora of SMT solvers and verifiers, the community has standardized the
problem input format and held an annual competition called SyGuS-Comp [Alur et al. 2018].
Typically, the synthesis techniques employed by the research community are classified into

two principal categories. The first is enumerative synthesis [Alur et al. 2015, 2017; Jeon et al.
2015, 2017; Srivastava et al. 2010; Udupa et al. 2013], which entails a systematic exploration of
potential implementations of the target function, followed by verification to ascertain if each
implementation satisfies the desired specification. Enumerative search techniques, in general,
exhibit broad applicability across diverse domains and arbitrary grammars. Nonetheless, due to the
exponential growth of the search space in proportion to the program’s size, scalability becomes
a formidable challenge. Despite the efforts of researchers to develop probabilistic models [Balog
et al. 2017; Barke et al. 2020; Chen et al. 2020; Lee et al. 2018; Murali et al. 2018; Si et al. 2019] that
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aid in guiding the enumeration process, this approach continues to face limitations in generating
large-scale programs.
The second and more traditional category is deductive synthesis, which aims to symbolically

transform the specification into the desired program by applying a sequence of deductive rules,
without resorting to concrete enumeration. When a suitable set of deductive rules is formulated
for a particular domain and the deduction process can be automated, the synthesis algorithm can
exhibit remarkable efficiency [Itzhaky et al. 2021; Polikarpova and Sergey 2019; Reynolds et al. 2015].
Such procedures typically concentrate on synthesis problems within specific domains featuring
fixed grammars, rendering them less suitable for addressing more generalized synthesis tasks that
involve arbitrary grammars provided by the user. In recent years, there has been a noteworthy
inclination towards integrating the efficacies of enumerative and deductive synthesis in innovative
manners [Feng et al. 2018, 2017; Feser et al. 2015; Huang et al. 2020; Lee 2021; Polozov and Gulwani
2015].

Nevertheless, the domain of bit-vector synthesis remains an area that has yet to be adequately ad-
dressed and resolved thus far. We note the presence of several distinctive challenges that contribute
to the exceptional complexity associated with bit-vector synthesis.
First, the domain of bit vectors encompasses an extensive array of standard operations and

user-defined functions, introducing many possibilities for a given synthesis task, often resulting in
numerous independent solutions of comparable sizes. For example, consider a simple synthesis
task with a single input-output example: (𝑥 = #b11, 𝑦 = #b10) ↦→ #b01. In this scenario, numerous
semantically distinct solutions exist, such as 𝑥 xor 𝑦, 𝑥 − 𝑦, not 𝑦, (𝑥 and 𝑦) ≫ 1, and more. In
contrast, the linear integer arithmetic (LIA) theory contains only two operators (+ and −) and
exhibits an algebraic normal form. From the perspective of deductive synthesis, the conventional
top-down decomposition [Gulwani 2011; Osera and Zdancewic 2015; Polozov and Gulwani 2015]
encounters inefficiencies due to the challenges associated with determining the optimal top operator
for the given synthesis problem. Furthermore, even for a singular operator, an abundance of potential
combinations arises (e.g., an output #x𝐹𝐹 can be #x00+#x𝐹𝐹 , or #x01+#x𝐹𝐸, or #x𝐹0+#x0𝐹 among
the exhaustive 64 alternatives). It is worth noting that Duet [Lee 2021] has acknowledged and
tackled this issue by constraining the top-down decomposition to values derived exclusively from
compact enumerated expressions. However, even with this approach, the ways of decomposition
can remain excessive when dealing with large problems.

Second, solutions to bit-vector synthesis problems tend to be large and involvemany case-splits by
conditions (e.g., the ITE operator). Without a nice balance between condition search and expression
search, a synthesizer is susceptible to two scenarios: excessive case splitting, resulting in overfit
solutions (e.g., CVC4 generates a 500-case solution for Case-splitting PBE benchmark 40_1000.sl),
or overly conservative case splitting, leading to highly resource-intensive or even unsolvable
expression search. Another issue stemming from large conditional expressions is that numerous
branches may share identical subexpressions, resulting in significant inefficiencies when employing
conventional size-based enumeration approaches. For instance, our solution for Case-splitting PBE
benchmark 76_100.sl is

ITE
(
(𝑥 ≫ #x1) and #x1 = #x0, not (𝑥 ≫ #x1), not (#x1 xor (𝑥 ≫ #x1))

)
The subexpression 𝑥 ≫ #x1 is used 3 times in the expression.

Lastly, From the perspective of enumerative synthesis, the multitude of operators and cases
significantly escalates the growth rate of the search space in relation to the condition/expression
size. As existing approaches [Lee 2021; Yoon et al. 2023] hardly employ any sophisticated tech-
niques beyond size-based brute-force enumeration, synthesizing substantial solutions is nearly
impracticable.
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In this paper, we introduce a novel synthesis approach that incorporates a distinct enumeration
strategy, wherein the ordering of enumeration is influenced not only by expression size but also by
factors such as the recurrence of subexpressions, example-based specification, and the guidance
from large language models. Although the primary focus of this paper is bit-vector synthesis, we
believe that the underlying methodologies put forth can offer significant benefits to a broader range
of syntax-guided synthesis problems that encounter similar challenges. Specifically, the technical
contribution of this paper includes:

• We develop a suite of techniques for expediting traditional, syntax-tree-based enumeration.
We enumerate candidates based on the size of term graphs, a compact representation of
expressions with recurring subexpressions. We also leverage the capabilities of a large
language model to identify a set of expressions deemed valuable for constructing a solution,
and add these expressions to the original grammar as extra functions.
• We enhance the verification step of the conventional enumerative synthesis algorithm by
incorporating a step of bottom-up deduction. With this extension, for each candidate gener-
ated, we evaluate whether it satisfies any subproblem that can contribute to the deductive
resolution of the original problem.
• We implemented our enhanced enumeration techniques in our SyGuS solver DryadSynth,
and compare its efficiency with state-of-the-art SyGuS solvers. DryadSynth outperformed
other solvers across major performance metrics, including the number of solved problems,
execution time, and solution size. Notably, DryadSynth successfully solved 31 benchmarks
for the first time, including 5 renowned Hacker’s Delight problems.

The rest of the paper is organized as follows. Section 2 explains through an example the challenges
faced by bit-vector synthesis and how our techniques help solve this problem. Section 3 formally
defines the example-based SyGuS problem we solve. Section 4 presents our expedited enumeration
techniques including term-graph-based enumeration, example-guided filtration of conditions and
expressions, and the guidance of large language models. Section 5 shows the enumeration algorithm
can be further improved through the incorporation of bottom-up deduction. Section 6 outlines the
design choices and optimizations employed in the DryadSynth implementation. Section 7 reports
our experimental results. Section 8 compares our method with existing literature. Finally, Section 9
will summarize our work and talk about the opportunities and challenges of applying our method
to other domains.

2 OVERVIEW
In this section, we motivate and demonstrate our approach via an example from the Hacker’s
Delight book [Warren 2012].

Example 2.1 (Hacker’s Delight 19, d5 ). The goal of the synthesis task is to exchange two fields 𝐴
and 𝐵 of a register 𝑥 . Besides 𝑥 , the synthesis problem takes two other inputs delineating 𝐴 and 𝐵:
𝑚 as a mask which identifies field 𝐵 and 𝑘 as the number of bits from the end of 𝐴 to the end of
𝐵. For instance, if𝑚 = #x𝐹𝐹, 𝑘 = #x08, the synthesizer is tasked to find an expression that swaps
𝑥 [0 : 7] and 𝑥 [8 : 15] — if 𝑥 = #x𝐴𝐹𝐵1, the expected output is output = #x𝐵1𝐴𝐹 . The specification
is formulated in the form of a collection of input-output examples. We use the grammar in Figure 3
for this problem (without functions), which is difficulty 5 (d5) grammar in SyGuS-Comp1. The
complete formalization of this SyGuS problem will be discussed in Section 4.

1SyGuS-Comp associated each Hacker’s Delight with a difficulty. Higher difficulty will use larger grammar. Difficulty 5 is
the largest grammar in SyGuS-Comp.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 71. Publication date: January 2024.



71:4 Yuantian Ding and Xiaokang Qiu

xor

xor ≪

𝑥 and

𝑚 xor

𝑥 ≫

𝑥 𝑘

𝑘and

𝑚 xor

𝑥 ≫

𝑥 𝑘

(a) Syntax tree.

xor

xor ≪

and

𝑚 xor

≫

𝑥 𝑘

1 2

2

1

1

21 2

1

2

1 2

(b) Term graph.

Fig. 1. Syntax tree and Term graph for the solution of Example 2.1.

A conventional solution as described in the Hacker’s Delight book [Warren 2012] is as follows:

𝑥 xor (𝜉 ≪ 𝑘) xor 𝜉 where 𝜉 = (𝑚 and (𝑥 xor (𝑥 ≫ 𝑘))) (2.1)

The solution has already exceeded the capabilities of all existing Syntax-Guided Synthesis (SyGuS)
solvers to the best of our knowledge. The problem presents challenges from both the enumerative
synthesis and deductive synthesis perspectives.

2.1 Challenges for Existing Approaches
From the perspective of enumerative synthesis, the size of the solution is simply too large. The
syntax tree representation of the solution entails 19 nodes, as depicted in Figure 1a. Notice that
conventional enumeration approaches examine candidates in ascending order based on the size
of the syntax tree. Given the large tree size and the large number of operators involved in the
grammar, the pure syntax-tree-based enumeration would necessitate examining approximately
1014 candidates before identifying this correct solution, which is impossible in practice.

From the perspective of deductive synthesis, a conventional approach is a divide-and-conquer
approach: it is called top-down propagation/deduction. This method repeatedly picks a top operator
for the current specification, and breaks down the synthesis task to subtasks by applying inverse
semantics using witness functions associated with the operators. The subtasks are smaller and can
be solved separately.While this method has demonstrated effectiveness in several domains [Gulwani
2011; Osera and Zdancewic 2015; Polozov and Gulwani 2015], it becomes extremely inefficient in
the domain of bit vectors. For example, Solution 2.1’s top operator is xor, but there is a myriad of
different ways to decompose the problem: every bit of output can be independently decomposed in
two ways, regardless of the output value, and there are 64 bits for each input-output example, and
there are 1,000 examples in our specification. It is worth mentioning that Duet [Lee 2021] mitigates
this problem by considering only the decompositions in which at least one subtask has been solved
by enumeration. However, as one can observe from Figure 1a, the subexpressions on both sides of
the top xor entail 9 nodes. In other words, the witness function has to consider all decompositions
involving subexpressions up to size 9, which is still an astronomical number for d5 grammar.

2.2 Our Approach
Now let us explain our distinct enumeration strategy through the motivating example. The first key
observation is that, as shown in Figure 1a, the highlighted subexpression (𝑚 and (𝑥 xor (𝑥 ≫ 𝑘)))
is used twice in the solution, making the size of the solution unnecessarily large. As such recurrences
are commonly seen in bit-vector synthesis, out insight lies in prioritizing these solutions during
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enumeration by merging recurring subexpressions. Our idea, as illustrated in Section 4, is to
enumerate based on the size of the term graph. Figure 1b showcases the term graph representation
of the same solution. As the subexpression (𝑚 and (𝑥 xor (𝑥 ≫ 𝑘))) is counted only once now, the
representation entails only 12 edges and 9 nodes. This reduction in the search space significantly
influences the tractability of the problem.

Furthermore, we have incorporated other techniques not exemplified in Example 2.1 to further
expedite the enumeration process. On one hand, we filter out useless expressions and conditions
promptly if they do not contribute to solving any example. On the other hand, we harness the
power of large language models to identify valuable subexpressions. By expanding the grammar,
we prioritize solutions that incorporate these identified subexpressions.

However, these expedited enumeration techniques are still insufficient in solving Example 2.1.
Consequently, another pivotal idea as detailed in Section 5, is leveraging deductive synthesis
techniques, and incorporating a bottom-up deduction step into the enumeration process. The
crux of the idea lies in the realization that while a single top-down propagation yields too many
possibilities, it is relatively manageable to incorporate a bottom-up deduction step eagerly each
time a candidate is enumerated. Whenever a candidate 𝑒 is enumerated, the algorithm checks if a
deduction pattern can be applied, angelically, such that a solution 𝑒+ containing 𝑒 is realizable. If
so, 𝑒 will be stored and the algorithm continues to explore other missing components until 𝑒+ can
be actually constructed.
As shown in Figure 2, Example 2.1 can be efficiently solved by enumerating components 𝜉 ≪

𝑘 and 𝑥 xor 𝜉 and combine them to a full solution through bottom-up deduction. During the
enumeration, we take 𝐿 xor 𝑅 as one of the templates to form a solution, where 𝐿 and 𝑅 can be found
by enumeration or automated reasoning. When the enumeration first reaches the expression 𝜉 ≪ 𝑘 ,
we evaluate 𝜉 ≪ 𝑘 with the input (𝑚 = #x𝐹𝐹, 𝑘 = #x08, 𝑥 = #x𝐴𝐹𝐵1). Obviously, the evaluation
result [[𝜉 ≪ 𝑘]] = #x1𝐸00 does not match the expected output output = #x𝐵1𝐴𝐹 . However,
through some automated reasoning we find that 𝜉 ≪ 𝑘 can potentially serve as the 𝐿 role of the
template—if another expression can be found to serve as the 𝑅 role such that [[𝑅]] = output⊕ [[𝜉 ≪
𝑘]] = #x𝐴𝐹𝐴𝐹 , then we can immediately construct a full solution with [[𝜉 ≪ 𝑘 xor 𝑅]] = output.
Thus we add 𝜉 ≪ 𝑘 into a hash table 𝑀 [𝐿] which stores all enumerated expressions that can
potentially serve as the 𝐿 role. We use the evaluation result #x1𝐸00 as the key of the hash table for
quick lookup.
As a suitable 𝑅 is not yet available, the enumeration continues and reaches 𝑥 xor 𝜉 at a later

point. Similar to the previous case, simple evaluation finds that 𝑥 xor 𝜉 is not a complete solution
but can serve as the 𝑅 role. This time, the collaborating 𝐿 component must satisfy [[𝐿]] = output ⊕
[[𝑥 xor 𝜉]] = #x1𝐸00. By looking up the hash table 𝑀 [𝐿] with key #x1𝐸00, we find that 𝜉 ≪ 𝑘

is already present in the hash table with the corresponding candidate 𝜉 ≪ 𝑘 . Now with 𝑥 xor 𝜉
functioning as the 𝑅 component and 𝜉 ≪ 𝑘 functioning as the 𝐿 component, the algorithm
immediately returns their combination (𝜉 ≪ 𝑘) xor (𝑥 xor 𝜉) as a complete solution. As illustrated
in Figure 2, this process necessitates an enumeration of less than 4 millions expressions, a drastic
reduction compared to the pure enumeration method’s requirement of 1014 expressions. Our
implementation DryadSynth successfully solved this problem—for the first time—in 27.1 seconds.

3 PRELIMINARIES
We now formally describe the bit-vector synthesis problem we solve in this paper.

Definition 3.1 (Signature). A signature is a pair 𝜎 = (Σ, 𝜏) where Σ is a finite set of symbols and
𝜏 : Σ→ N is an arity function. Specifically, a symbol 𝑥 is a variable if 𝜏 (𝑥) = 0 and a symbol 𝑓 is a
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Fig. 2. A basic example for deduction. (𝜉 = (𝑚 and (𝑥 xor (𝑥 ≫ 𝑘))))

function if 𝜏 (𝑓 ) > 0. The set of variables and the set of functions within 𝜎 are denoted as V𝑎𝑟𝑠 (𝜎)
and F𝑢𝑛𝑐𝑠 (𝜎), respectively.

We denote the set of all standard bit-vector operations as BVOps. The bit-vector operations are
interpreted with common semantics given in the SMT-LIB standard [Barrett et al. 2017]. We also
denote the set of all available constants in bit-vector domain as BVConst. Now with the theory
of bit-vectors, we can define extended signatures which included operators and constants in the
alphabets.

Definition 3.2 (Extended Signature). An extended signature is defined as 𝜎+ = (Σ+, 𝜏+), where
extended symbol set Σ+ = Σ ∪ BVOps ∪ BVConst is the symbol set with all operators and all
constants in Fig 3, 𝜏+ : Σ+ → N is the arity function on the extended symbol set Σ+, which assign
an arity number to all functions, operators, constants and variables. e.g. 𝜏+ (and) = 2, 𝜏+ (not) = 1.
Specifically the arity of a constant or variable is always 0.

We next define expression grammar which captures the syntactic part of the synthesis problem.

Definition 3.3 (Expression Grammar). Let 𝜎 be a signature and V𝑎𝑟𝑠 be a variable set, an expression
grammar G with respect to 𝜎 and V𝑎𝑟𝑠 is a tuple (N , 𝑆,P), whereN a set of non-terminal symbols,
𝑆 ∈ N is the start symbol, and P is a set of production rules each of the form𝑁 → 𝜅 (𝑁1, . . . , 𝑁𝜏+ (𝜅 ) )
where 𝑁, 𝑁1, · · · ∈ N are non-terminal symbols and 𝜅 ∈ Σ+ is a function, operator, constant or
variable. Let JGK denote the set of all expressions generated by G: {𝑒 | 𝑆 −→

P
∗ 𝑒}.

Example 3.4. Figure 3 defines a standard grammar for fixed-width bit-vector expressions. This
grammar consists of variables from the signature, bit-vector constants of a fixed width 𝑚, and
arbitrary combinations of them using common bit-vector operations from BVOps as well as functions
from the signature. We use either binary or hexadecimal representation for bit-vector constants.
For example, #b11111111 is equivalent to #x𝐹𝐹 . We denote the set of bit-vector constants of width
𝑚 as B𝑉 [𝑚].

The functions in the grammar are interpreted with user-provided semantics. Formally, the
semantics of an 𝑛-ary interpreted function 𝑓 is a term 𝜆𝑥1, . . . , 𝑥𝑛 .Ψ, where Ψ is a bit-vector
expression with variables 𝑥1, . . . , 𝑥𝑛 and without function calls.

Now we are ready to define the syntax-guided synthesis problem for bit-vectors.

Definition 3.5 (SyGuS problem). An instance of the SyGuS problem is given by a tuple (𝜎, 𝑡,Φ,G)
where 𝜎 is a signature, 𝑡 is an 𝑛-ary uninterpreted function to synthesize, Φ is a SyGuS specification
containing 𝑡 and other variables and functions from 𝜎 , and G is an expression grammar with
respect to 𝜎 and variables {𝑥1, . . . , 𝑥𝑛}. A solution to the SyGuS problem is an expression 𝑒 ≡
𝜆𝑥1, . . . , 𝑥𝑛 .𝛾 (𝑥1, . . . , 𝑥𝑛) such that: a) 𝛾 (𝑥1, . . . , 𝑥𝑛) ∈ JGK; and b) Φ[𝑒/𝑡] is valid, i.e., instantiating
𝑡 with 𝑒 makes Φ valid.
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𝐸 → not 𝐸 | 𝐸 and 𝐸 | 𝐸 or 𝐸 | 𝐸 xor 𝐸 (bitwise operations)
𝐸 → neg 𝐸 | 𝐸 add 𝐸 | 𝐸 mul 𝐸 | 𝐸 sub 𝐸 | 𝐸 udiv 𝐸

| 𝐸 sdiv 𝐸 | 𝐸 urem 𝐸 | 𝐸 srem 𝐸 (arithmetic operations)
𝐸 → ITE(𝐸 = 0, 𝐸, 𝐸) (if-then-else operations)
𝐸 → 𝐸 ≪ 𝐸 | 𝐸 ≫ 𝐸 | 𝐸 ashr 𝐸 (shift operations)
𝐸 → 𝐶 (constants)
𝐸 → 𝑥 | 𝑦 | . . . (variables)
𝐸 → 𝑓 (𝐸, . . . , 𝐸) | 𝑔(𝐸, . . . , 𝐸) | . . . (function calls)

𝐶 ∈ B𝑉 [𝑚] : fixed-width bit-vector constant
𝑥,𝑦 ∈ V𝑎𝑟𝑠 (𝜎) : Variables 𝑓 , 𝑔 ∈ F𝑢𝑛𝑐𝑠 (𝜎) : Functions

Fig. 3. A standard grammar for fixed-width bit-vector expressions.

Definition 3.6 (Example-based SyGuS problem). We call a SyGuS problem (𝜎, 𝑡,Φ,G) example-
based if the specification Φ is the input-output examples constraints of the following form:

Φ ≡
∧

(𝑖𝑖𝑖 ↦→𝑜 ) ∈𝑆
𝑡 (𝑖𝑖𝑖) = 𝑜

in which 𝑆 is the set of input-output examples of the form 𝑖𝑖𝑖 ↦→ 𝑜 where 𝑖𝑖𝑖 is a vector of inputs and
𝑜 is the expected output. We denote an example-based SyGuS problem as a tuple (𝜎, 𝑆,G).

The SyGuS problem for Example 2.1 is example-based, which can be represented by a tu-
ple (𝜎, 𝑆,G). Signature 𝜎 = (Σ, 𝜏) defines variables Σ = {𝑥,𝑚, 𝑘} in the synthesis context. 𝑆 =

{(#x𝐴𝐹𝐵1, #x𝐹𝐹, #x8) ↦→ #x𝐵1𝐴𝐹 } is the set of examples. G is the grammar used for the search,
which is shown in Fig 3.

In this paper, we focus on example-based SyGuS problems. When the specification is non-
example-based, we assume the problem is handled by a standard counterexample-guided inductive
synthesis (CEGIS) loop [Solar-Lezama et al. 2006] and our techniques will be applied to solve the
example-based, inductive synthesis problems in each iteration.

4 EXPEDITED ENUMERATION
In this section, we demonstrate our innovations that expedite the process of traditional enumeration
based on the syntax tree size. We begin by introducing term graph which enables size-based
enumeration without counting duplicated subexpressions. We then present our enumeration
algorithm which conducts a federated search for both conditions and expressions. Finally, we show
how we accelerate the enumeration process by extending the original grammar with valuable
expressions found by large language models.

4.1 Term-Graph-Based Enumeration
In a conventional enumeration process, candidates in the search space are typically examined in
ascending order based on the size of the syntax tree. However, as demonstrated in Example 2.1 in
Section 2, solutions to bit-vector synthesis problems often encompass recurring subexpressions,
leading to an unnecessarily large size of the syntax tree.

To address this issue, we adapt the standard syntax-tree-size-based enumeration to an enumera-
tion based on the size of the term graph [Garner 2011]. This adaptation enables us to prioritize the
exploration of expressions that incorporate a higher number of recurring subexpressions. Intuitively,
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term graphs generalize abstract syntax trees to represent shared subexpressions. Below we define
our notation for term graphs and then discuss the enumeration order of all possible expressions.

Definition 4.1 (Term Graph). Given a grammar G = (N , 𝑆,P), a term graph with respect to G is
a labeled direct acyclic graph 𝐺 = (𝑉 , 𝑙, rt, 𝐸) where
• 𝑉 is a finite set of nodes,
• 𝑙 : 𝑉 → P is a label function,
• rt ∈ 𝑉 is the root node,
• 𝐸 ⊂ 𝑉 × N ×𝑉 is a set of directed, labeled edges

that satisfies the following conditions:
• the graph is acyclic;
• rt is a unique node that can reach all other nodes through the edges;
• for every node 𝑣 ∈ 𝑉 , let 𝑙 (𝑣) be the production rule 𝑁 → 𝜅 (𝑁1, . . . , 𝑁𝜏+ (𝜅 ) ) in P, where
𝜅 ∈ Σ+ is a function, operator, constant or variable, 𝑁, 𝑁1, . . . , 𝑁𝜏+ (𝜅 ) ∈ N are non-terminals,
then 𝑣 has 𝜏+ (𝜅) outgoing edges: for every 1 ≤ 𝑖 ≤ 𝜏+ (𝜅), there exists a unique node 𝑣 (𝑖)
such that

(
𝑣, 𝑖, 𝑣 (𝑖)

)
∈ 𝐸 is an edge of the graph, and 𝑙 (𝑣 (𝑖)) is a production rule starting from

𝑁𝑖 .
The size of the graph |𝐺 | is defined as the number of edges |𝐸 |.

Remark: Note that our edge-based graph size is different from conventional node-based defi-
nition. This distinction arises from the intuition that, when an expression incorporates multiple
instances of a variable, the complexity of the expression is inherently influenced by the number of
occurrences of that variable. As an example, neg not 𝑥 should be simpler and enumerated earlier
than (𝑥 add 𝑥) and (𝑥 add 𝑥).

Definition 4.2 (Represented Expression). Given grammar G and a term graph 𝐺 = (𝑉 , 𝑙, rt, 𝐸) with
respect to G, a mapping Exp : 𝑉 → JGK can be defined recursively as follows: for every 𝑣 ∈ 𝑉 , if
𝑙 (𝑣) is the production rule 𝑁 → 𝜅 (𝑁1, . . . , 𝑁𝜏+ (𝜅 ) ), then

Exp(𝑣) = 𝜅

(
Exp

(
𝑣 (1)

)
, . . . , Exp

(
𝑣 (𝜏+ (𝜅))

) )
Specifically, when 𝜅 is a constant or variable, the definition falls in the base case and Exp(𝑣) is
simply 𝑙 (𝑎), the constant or variable labeling the node. We also write Exp(𝐺) to denote Exp(rt),
the expression represented by the root node rt.

It is evident that a single expression can be represented by various term graphs, each exhibit-
ing distinct levels of subexpression sharing. At one end of the spectrum, an expression can be
represented by a standard syntax tree, which serves as a term graph without any sharing of subex-
pressions. On the other end, as demonstrated below, an expression can be represented by a unique,
minimal term graph, without any recurring subexpressions. Below we formally define it as compact
term graph and prove its uniqueness.

Definition 4.3 (Compact Term Graph). A term graph 𝐺 = (𝑉 , 𝑙, rt, 𝐸) is compact if every node
in the graph represents a unique expression. Formally, for every two distinct nodes 𝑢, 𝑣 ∈ 𝑉 ,
Exp(𝑢) ≠ Exp(𝑣).

Theorem 4.4 (Uniqe Compact Term Graph). Given a non-ambiguous grammar G (i.e., every
expression in JGK has a unique derivation), for every expression in JGK, there is a unique compact
term graph representing 𝑒 .
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Proof. By Definition 4.2, every term graph represents only one expression. In other words, two
distinct expressions cannot be represented by the same term graph. What remains is to show that
there do not exist two distinct compact term graphs both representing the same expression 𝑒 . As G
is unique, 𝑒 has a unique parse tree. Hence, we can prove the theorem by induction on the size of
the parse tree of 𝑒 .
• Base case: If the parse tree is of size 1, i.e., is a constant or variable, there is only one term
graph which contains only one node labeled by the constant or variable and is trivially
unique.
• Inductive case: If the parse tree’s top production rule 𝑃 is of the form 𝑁 → 𝜅 (𝑁1, . . . , 𝑁𝜏+ (𝜅 ) )
where 𝜅 is a function or an operator, then 𝑒 is of the form 𝜅 (𝑒1, . . . , 𝑒𝜏+ (𝜅 ) ) where each 𝑒𝑖 is
a subexpression with a smaller parse tree. Now assume that 𝑒 can be represented by two
distinct term graphs 𝐺1 = (𝑉1, 𝑙1, rt1, 𝐸1) and 𝐺2 = (𝑉2, 𝑙2, rt2, 𝐸2). Then first, 𝑙1 (rt1) = 𝑙2 (rt2).
Second, for each 1 ≤ 𝑖 ≤ 𝜏+ (𝜅), both the subgraphs with roots rt1 (𝑖) and rt1 (𝑖) are compact
and represent subexpression 𝑒𝑖 . With the inductive assumption, there is only a unique term
graph representing 𝑒𝑖 , the two subgraphs are isomorphic. Combining all these subgraphs and
the roots, 𝐺1 and 𝐺2 are also isomorphic, contradicting with the assumption.

□

Given Theorem 4.4, for every expression 𝑒 we denote its unique compact term graph as 𝐺 (𝑒).

Example 4.5. Figure 1b shows the unique term graph for the solution the example Hacker’s
Delight 19 (Equation 2.1). The highlighted part of the graph shows the shared subexpression which
occurs on both sides of the top xor operator (cf. Figure 1a which shows the syntax tree of the same
expression without sharing).
In accordance with Definition 4.1, each node within the graph is labeled with a production

rule. However, for the sake of clarity, we visually represent each node using the corresponding
function or operator, which is distinct for each production rule in the grammar for Hacker’s Delight.
Additionally, every edge in the graph is labeled with an integer. For example, the edge from and to
𝑚 is labeled with 1, denoting the existence of an edge (and, 1,𝑚) within the graph.

By counting the edges within the graph, one can observe that the size of the term graph is 12. In
contrast, the corresponding syntax tree consists of 19 nodes. It is worth noting that to discover this
particular solution, a syntax-tree-based enumeration would check an orders-of-magnitude larger
number of candidates compared to a term-graph-based enumeration.

Now we are ready to establish a new enumeration order over all expressions in JGK. Intuitively,
the enumeration order prioritizes expressions with smaller compact term graph than those with
larger compact term graph. In cases where two expressions have compact term graphs of identical
size, the order between them is established by a total order of the production rules in G. The order
is defined as follows:

Definition 4.6 (Ordered grammar). An ordered grammar is a tuple G = (N , 𝑆,P, ≺) where
G = (N , 𝑆,P) forms a grammar as defined in Definition 3.3, and ≺ ⊆ P × P is a total order of the
production rules.

Definition 4.7 (Enumeration Order). Given an ordered grammar G = (N , 𝑆,P, ≺), an enumeration
order with respect to G is a total order ≺G ⊆ JGK × JGK defined as follows. Let 𝑒1, 𝑒2 ∈ JGK be two
expressions and let their compact term graphs𝐺 (𝑒1) and𝐺 (𝑒2) be (𝑉1, 𝑙1, rt1, 𝐸1) and (𝑉2, 𝑙2, rt2, 𝐸2),
respectively, then 𝑒1 ≺G 𝑒2 if and only if:
• |𝐺 (𝑒1) | < |𝐺 (𝑒2) |
• |𝐺 (𝑒1) | = |𝐺 (𝑒2) | and 𝑙1 (rt1) ≺ 𝑙2 (rt2)
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• |𝐺 (𝑒1) | = |𝐺 (𝑒2) |, 𝑙1 (rt1) = 𝑙2 (rt2) and exists an 𝑖 ≥ 0 such that:
– for every 0 ≤ 𝑗 < 𝑖 , Exp(rt1 ( 𝑗)) = Exp(rt2 ( 𝑗)) and
– Exp(rt1 (𝑖)) ≺G Exp(rt2 (𝑖))

Example 4.8. The enumeration order we use in our implementation is based on an ordered
grammar which extends the grammar shown in Figure 3. As every production rule in the grammar
derives a distinct function/operator, the order is essentially an order of operators, variables, constants
and functions:

not ≺ and ≺ or ≺ · · · ≺ lshr ≺ Constants ≺ Variables ≺ Functions
Based on this order of operations, as an example, 𝑥 ≺G (𝑥 ≫ 𝑘) because 𝑥 has a smaller size,
not not 𝑥 ≺G not neg 𝑥 because not ≺ neg.

4.2 Example-Guided Filtration of Conditions and Expressions
With the enumeration order in place, we can now proceed to present our basic enumeration
algorithm for bit-vector synthesis. Similar to other SyGuS problems that allow the ITE case splitter
within the grammar, many bit-vector synthesis problems expect “decision tree” solutions which
combines multiple expressions using ITE’s, each applied only under an exclusive condition from
the grammar. Therefore, the goal of the algorithms is to a) search for a set of expressions that
encompass all examples; b) search for a set of conditions that avoid excessive case splitting and
overfitting; and c) combine them to a decision tree solution.
Besides the novel term-graph-based enumeration order, our algorithm per se is similar to the

enumeration algorithm utilized in EuSolver [Alur et al. 2017], Duet [Lee 2021] and Simba [Yoon
et al. 2023]. In a nutshell, the algorithm maintains two sets: one for terms and another for predicates.
It concurrently expands these sets through enumeration and repeatedly attempts to construct a
decision tree solution.
However, a noteworthy limitation of their algorithm is their lack of specialization for example-

based synthesis: even if an expression or condition fails to cover or distinguish any example, it is
still included in the term/predicate set for decision tree construction. To this end, an important
distinction or novelty of our algorithm lies in its proactive filtration of non-relevant terms and
predicates based on the input-output examples provided as the specification.
Algorithm 1 depicts our enumeration with example-guided filtration of conditions and expres-

sions. The algorithm maintains two sets: the expression set 𝐸 which contains all partial solutions
(expressions that solve at least one example), and the condition set 𝐶 which contains all conditions
that can split the input-output example set 𝑆 . Both sets are all initialized to ∅ at the beginning
of the algorithm. The while loop from lines 4–10 performs the enumeration of a new term 𝑒 . By
invoking NextDistinctTerm(≺G), the term is always the next one in the term-graph-based order
≺G which is observably distinct from all existing expressions in 𝐸.

In each iteration, the algorithm attempts to update 𝐸 and𝐶 with new, filtered components under
the guidance of the example-based specification (lines 6–8). For each input-output example 𝑖𝑖𝑖 ↦→ 𝑜 ,
it attempts to extract a partial solution mapping 𝑖𝑖𝑖 to 𝑜 , by calling a subprocedure Extract(𝑒, 𝑖𝑖𝑖, 𝑜),
and add it to 𝐸. As the simplest instantiation of Extract, the function ExtractI simply extracts 𝑒
if applying 𝑒 on 𝑖𝑖𝑖 (represented as [[𝑒]] (𝑖𝑖𝑖)) yields 𝑜 . In Section 5, we will present a more advanced
instantiation of Extract which embodies our innovative deduction-guided enumeration technique.
After updating 𝐸, the algorithm attempts to expand the condition set 𝐶 with a new condition 𝑒 = 0
as long as the condition can distinguish inputs within the specification 𝑆 , i.e., the condition holds
for at least one input example and fails for at least one input example.
Once 𝐸 and 𝐶 are updated, the algorithm checks if they are sufficient for constructing a full

solution: for every 𝜔 as a combination of conditions within 𝐶 , there exists one expression 𝑒 ∈ 𝐸
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Algorithm 1: Term-Graph-Based Enumerative Synthesis
Input :An example-based SyGuS problem (𝜎, 𝑆,G) where 𝜎 is a signature, 𝑆 is a set of

input-output examples, G is a grammar.
Output :A solution to the input problem.

1 fn Synth(𝜎, 𝑆,G) :
2 𝐸,𝐶 ← ∅,∅ // Expressions set and condition set

3 𝑡 ← ⊥
4 while QualityCheck(𝑡) = false :
5 𝑒 ← NextDistinctTerm(≺G)
6 𝐸 ← 𝐸 ∪ Extract(𝑒, 𝑆) // Extract potential partial solutions from 𝑒

7 if
( ∨
(𝑖𝑖𝑖 ↦→𝑜 ) ∈𝑆

[[𝑒]] (𝑖𝑖𝑖) = 0
)
∧
( ∨
(𝑖𝑖𝑖 ↦→𝑜 ) ∈𝑆

[[𝑒]] (𝑖𝑖𝑖) ≠ 0
)
: // Check if 𝑒 = 0 can split 𝑆

8 𝐶 ← 𝐶 ∪ {𝑒 = 0}
9 if Φ𝑆

cover (𝐸,𝐶) :
10 𝑡 ← LearnDT(𝐸,𝐶, 𝑆)

11 return 𝑡

12 fn ExtractI (𝑒, 𝑆) for Extract :
13 if

∨
𝑖𝑖𝑖 ↦→𝑜∈𝑆

[[𝑒]] (𝑖𝑖𝑖) = 𝑜 :

14 return {𝑒}
15 else :
16 return ∅

such that 𝑒 covers 𝜔 , i.e., all example inputs that satisfy 𝜔 can be mapped to the expected output
by applying 𝑒 . This condition is captured formally by a formula:

Φ𝑆
cover (𝐸,𝐶) ≡

∧
𝜔∈{0,1} |𝐶 |

∨
𝑒∈𝐸

∧
(𝑖𝑖𝑖 ↦→𝑜 ) ∈𝑆

©«©«
∧

𝑗∈[1.. |𝐶 | ]
𝜔 𝑗 = 1↔ [[𝐶 𝑗 ]] (𝑖𝑖𝑖)ª®¬ −→ [[𝑒]] (𝑖𝑖𝑖) = 𝑜

ª®¬
If Φ𝑆

cover (𝐸,𝐶) succeeds, the algorithm proceeds to learn a decision tree 𝑡 from 𝐸 and 𝐶 using
the LearnDT subprocedure. We utilize an adapted version of the ID3 algorithm [Quinlan 1986],
as described in [Alur et al. 2017], for the decision tree learning process. Another subprocedure
QualityCheck is applied for final quality check before 𝑡 is returned as a solution. For example,
to avoid overfitting, one can examine the number of ITE operators in 𝑡 does not exceed a preset
threshold 𝜃 . The algorithm continues until a solution 𝑡 is generated and quality-checked.

4.3 More Acceleration with the Guidance of Large Language Models
Although our term-graph-based enumeration expedites the search for solutions involving recurring
subexpressions, it may still prove inadequate when dealing with solutions of significantly larger
sizes that surpass the capabilities of existing SyGuS solvers. As an example, the solution to the
Hacker’s Delight 25 example (see Example 4.9 below and Figure 5a) remains substantial even after
merging all repeated subexpressions, with a size of 31. A straightforward enumeration algorithm is
simply incapable of scaling to discover solutions of such large size. To address this challenge, we
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Fig. 4. Extending grammar with ChatGPT-generated expressions.

harness the power of large language models to generate valuable components that assist in the
search process. We next illustrate our ideas through the example.

Example 4.9. (Hacker’s Delight 25) The synthesis task is to compute, using the grammar in
Fig 3, the higher-order half of the 64-bit product of two 32-bit integers 𝑥 and 𝑦. In addition to a
collection of input-output examples that serve as an example-based specification, a natural language
description of the synthesis task is also provided.

We utilize ChatGPT [OpenAI 2022] as the large language model. Although we discovered that
ChatGPT alone may not be adequate for finding a complete solution to the problem, it is valuable
in identifying useful subexpressions that can be used in the final solution. We outline the process
of interacting with the model in Figure 4. We initially ask ChatGPT to produce a detailed solution
by providing it with the natural language description and 3 input-output examples. Specifically, for
Example 4.9, our prompt to ChatGPT would be as follows: “Give me some useful subexpressions in
each step to compute higher order half of product of x and y. Here are some of the examples:” Then we
provide several generated input-output examples in hexadecimal to ChatGPT.

We repeat this process for 20 times using the same prompt. Subsequently, we parse each output
from ChatGPT to extract a sequence of expressions. Each expression in the sequence represents an
individual step towards solving the problem. This process yields a significant number of subexpres-
sions, many of which may not be helpful for the search process. To identify useful subexpressions
from them, we employ a filtering mechanism based on clustering. By analyzing the frequency
of appearance across all 20 outputs, we can determine the subexpressions that occur frequently,
indicating their potential usefulness in the synthesis process. By applying clustering techniques,
we filter out expressions that appear less than 4 times, ensuring that only the most relevant and
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Fig. 5. Term graphs for the solution to Hacker’s Delight 25.

frequently occurring subexpressions are retained for further utilization in the search process. We
denote the identified common subexpressions as blue and show how many times every one appears
in the solutions in Figure 4.
After clustering, we add every clustered subexpression (modulo variable renaming) into our

grammar as a new defined function. Figure 4 shows the enhanced grammar. A solution under the
enhanced grammar is shown as a term graph in Figure 5b. As the graph comprises only 24 edges,
the solution can be found much earlier than under the original grammar.

Note that the LLM-guided acceleration technique is not applicable to all synthesis problems. First,
it relies on a natural language description being provided as part of the specification, which may
not be available in all cases. Second, the queries to ChatGPT can be time-consuming, often taking
tens of seconds to generate a response. For relatively simple synthesis problems, the overhead of
using the large language model may outweigh the benefits gained from acceleration.

5 BOTTOM-UP DEDUCTION FOR ENUMERATION
In Section 4, we have presented our enumerative synthesis algorithm expedited with various
techniques, including term-graph-based enumeration order, example-guided filtration, and LLM-
enhanced grammars. In this section, we show how the pure enumeration algorithm can be further
improved through the incorporation of bottom-up deduction techniques.

Recall that in Algorithm 1, for each newly enumerated term 𝑒 , the expression set 𝐸 is extended
with the output from the Extract invocation. In the pure enumerative setting (i.e., the ExtractI
instantiation shown in Algorithm 1), the invocation simply returns 𝑒 if it is a partial solution.
Our improvement builds on the following insight: even if 𝑒 is not a partial solution, it may be in
proximity to a partial solution, meaning that it can be utilized in the construction of a solution
through a few deduction steps.

Example 5.1. To illustrate the idea, consider an input-output example for a binary function with
input variables 𝑥 and𝑦: (#b0100, #b1001) ↦→ #b1101, and imagine that the algorithm is enumerating
𝑦, a size-0 term. While 𝑦 alone is obviously not a solution, we may discover that the difference
to the expected output (#b1101 − #b1001) = #b0100 matches a previously enumerated term, 𝑥 .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 71. Publication date: January 2024.



71:14 Yuantian Ding and Xiaokang Qiu

Therefore, the Extract subprocedure can immediately return 𝑥 +𝑦 as a solution, instead of waiting
until this size-2 term is enumerated.

From the perspective of deductive synthesis, we performed bottom-up deduction using a simple
constructive rule for addition: if two expressions 𝑒1 and 𝑒2 produce outputs 𝑜1 and 𝑜2, respectively, a
larger expression 𝑒1 +𝑒2 can be constructed for producing output 𝑜1 +𝑜2. We refer to the expressions
𝑒1 and 𝑒2 that contribute to the construction as serving at positions add1 and add2, respectively.

To implement this idea which we call bottom-up deduction, there is a couple of major technical
challenges. First, as the components of a solution can be found in an arbitrary order (e.g., 𝑥 before 𝑦
or 𝑦 before 𝑥 in Example 5.1) and smaller components may be composed to form larger components
(e.g., 𝑥+𝑦 can still be a component of a larger solution), the algorithmmust coordinate and propagate
information between these interdependent positions. Second, determining if an expression can
serve in a position involves automated reasoning and is computationally difficult.
In this section, we present the techniques that address these two challenges. In Section 5.1, we

formally introduce the notion of closed position set to describe a set of positions that need to
coordinate in the synthesis process, and then illustrate the bottom-up deduction algorithm which
maintains a closed position set and propagates information between positions. The algorithm can
be integrated into the enumeration framework presented in the previous section. In Section 5.2, we
discuss how the deduction process can be accelerated by leverage features of common operators in
the theory of bit-vectors.

5.1 Bottom-Up Deduction
Above we have introduced the notion of position such as add1 and add2. Intuitively, a position
indicates the role a subexpression can serve in a full solution. For example, 𝑥 serving in position
add1add1 means that there is a potential solution of the form (𝑥+??)+??, where 𝑥 serves as the
1st operand of an additive expression 𝑥+?? which further serves as the 1st operand of the full
expression. Below we formally define the concept of position and some related terminologies such
as prefixes and second prefixes. Intuitively, prefixes capture the subexpression relation between
positions, and second prefixes capture the relation that one position relies on another position. For
example, the template (𝑥+??)+?? for add1 involves two other positions with unknown expressions:
add1add2 and add2. They are what add1 relies on to construct a full solution and hence second
prefixes of add1.

Definition 5.2 (Position). Given a grammar G = (N , 𝑆,P) with 𝜎 = (Σ, 𝜏) being the associated
signature, a position with respect to G is a string 𝑝 ∈ Π∗ where Π =

{
𝜅𝑚

��𝜅 ∈ Σ+, 0 < 𝑚 ≤ 𝜏+ (𝜅)
}
.

A term graph 𝐺 = (𝑉 , 𝑙, rt, 𝐸) admits position 𝑝 if there exists a sequence of nodes 𝑣0 . . . 𝑣 |𝑝 | such
that for every index 1 ≤ 𝑗 ≤ |𝑝 |, if the 𝑗-th element of 𝑝 is 𝜅𝑚 , then 𝑙 (𝑣 𝑗−1) is a production of the
form 𝑁 → 𝜅 (. . . ), and 𝑣 𝑗−1 (𝑚) = 𝑣 𝑗 .

We denote position 𝑝’s last operator as Op(𝑝) . Note that a prefix of a position is also a position.
We denote the set of all prefixes of a position 𝑝 as Prefixes(𝑝). If 𝑝 = 𝑞 𝜅𝑚 for some 𝜅 and 𝑚,
we call 𝑝 a child of 𝑞, and 𝑞 the parent of 𝑝 (denoted as Parent(𝑝)). We call 𝑝 a second prefix of
𝑞 if Parent(𝑝) ∈ Prefixes(Parent(𝑞)). We denote the set of all second prefixes of a position 𝑝 as
SndPref(𝑝).

Example 5.3. In Figure 1b, there are two paths from the root to the highlighted subgraph,
witnessing that expression 𝜉 can serve in two distinct positions: xor1xor2 and xor2shl1. And as
we mentioned in Section 2, two expressions 𝜉 ≪ 𝑘 and 𝑥 xor 𝜉 are enumerated and stored in the
synthesis procedure. They both encompass 𝜉 and serve in positions xor2 and xor1, respectively.
It can also be verified that xor2 and xor1 are the second prefixes of xor1xor2 and xor2shl1,
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respectively. Specifically, the graph trivially admits the empty position 𝜀 which corresponds to the
whole expression.

Note that to enable bottom-up deduction, multiple positions must coordinate. On one hand,
expressions serving in one position relies on other expressions serving in its second-prefix positions;
on the other hand, an expression serving in a parent position can be constructed through deduction
from expressions serving in its child positions. Therefore, our algorithm sticks to a fixed set
of positions, keeps track of expressions serving in each position of the set simultaneously, and
propagates information between positions. To ensure that every position gets information it relies
on, the set must be closed under second prefix. We formally define it as a closed position set.

Definition 5.4 (Closed Position Set). A set of positions 𝑃 is closed if for every position 𝑝 ∈ 𝑃 , all of
the prefixes and second prefixes of 𝑝 are also in 𝑃 .

Example 5.5. Consider the following position sets: 𝑃1 = {𝜖, xor1, xor2, xor1xor2, xor1xor2},
𝑃2 = {𝜖, xor1, xor2, xor1xor2}, 𝑃3 = {𝜖, xor1, xor2}. 𝑃2 is not a closed position set because xor1xor2
has a second prefix xor1xor1 which is not in 𝑃2. Hence 𝑃2 is not suitable for our algorithm to keep
track of as xor1xor2 would not get information from xor1xor1. While 𝑃1 and 𝑃3 are closed position
sets, 𝑃1 contains more positions, meaning that the algorithm will keep track of more components
and perform more deduction, at the cost of more runtime overhead. In subsequent examples, we
take 𝑃3 as the position set for the algorithm. We will discuss how we choose the position set 𝑃 in
Section 5.2.

Given the formalism above, we are now ready to present bottom-up deduction for enumeration as
Algorithm 2. This algorithm is denoted as a function ExtractD , functioning as an implementation
of the Extract subprocedure found in Algorithm 1. The function takes as input a term 𝑒 and an
example-based specification 𝑆 , and aims to extract a collection of partial solutions which satisfy
some examples from 𝑆 . As illustrated in Example 5.1, even if 𝑒 per se is not a partial solution, it
may serve as a subexpression of a solution at one particular position, and let the partial solution
be derived in a bottom-up fashion. To this end, the algorithm maintain a persistent, global map
𝑀 from each position 𝑝 in a closed position set 𝑃 , to a set of candidate expressions at 𝑝 . Each
expression within the set can potentially lead to a partial solution that works on a set of sample
inputs 𝐼𝐼𝐼 , starting from the current position. The sets 𝑃 and 𝐼𝐼𝐼 are provided as parameters for the
algorithm. For example, when 𝑃 = {𝜖, xor1, xor2}, our algorithm can perform the deduction shown
in Figure 2.
Given the input expression 𝑒 , in the first loop, the algorithm determines, for each position 𝑝 ,

if 𝑒 can be added to 𝑀 [𝑝] by checking a quantified formula Φ𝑀
𝐼𝐼𝐼,𝑆
({𝑒 ↦→ 𝑝}). Intuitively, the Φ𝑀

𝐼𝐼𝐼,𝑆

formula is parameterized by E, a mapping from positions to expressions, and checks if it is possible
to construct a term graph that maps all sample inputs to expected output, with every position
in E being filled by the corresponding expression, and all other positions being filled angelically.
Formally,

Φ𝑀
𝐼𝐼𝐼,𝑆 (E) ≡ ∃ . . . ∃𝑥

𝑖𝑖𝑖
𝑞 . . .︸        ︷︷        ︸

every 𝑖𝑖𝑖∈𝐼𝐼𝐼
every 𝑞 ∈ SndPref(E) ∪ {𝜀 }

: ©«
∧

𝑖𝑖𝑖∈𝐼𝐼𝐼 , (𝑖𝑖𝑖 ↦→𝑜 ) ∈𝑆
𝑥𝑖𝑖𝑖𝜀 = 𝑜

ª®¬ ∧
©«

∧
𝑖𝑖𝑖∈𝐼𝐼𝐼

𝑝∈Domain(E)

(
𝑥𝑖𝑖𝑖𝑝 = JE(𝑝)K(𝑖𝑖𝑖)

)ª®®®¬
∧

∧
𝑖𝑖𝑖∈𝐼𝐼𝐼

𝑞𝜅𝑚∈SndPref(E)

(
𝑥𝑖𝑖𝑖𝑞 = 𝜅 (𝑥𝑖𝑖𝑖𝑞𝜅1 , . . . , 𝑥

𝑖𝑖𝑖
𝑞𝜅𝜏+ (𝜅 )

)
)
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Algorithm 2: Bottom-Up Deduction (serving as the Extract subprocedure in Algorithm 1)
Parameters :A set of sample inputs 𝐼𝐼𝐼 and a closed position set 𝑃 w.r.t. G.
Input :An expression 𝑒 ∈ JGK and a set of input-output examples S.
Maintains :A map𝑀 : 𝑃 → P(JGK)
Output :A set of candidate expressions that may be constructed by bottom-up

deduction from 𝑒 .
1 𝑀 ← {𝑝 ↦→ ∅ | 𝑝 ∈ 𝑃} // Initialized 𝑀 to ∅ for every path 𝑝

2 fn ExtractD (𝑒, 𝑆) for Extract :
3 for 𝑝 ∈ 𝑃 : // Iterate every 𝑝

4 if Φ𝑀
𝐼𝐼𝐼,𝑆
({𝑝 ↦→ 𝑒}) : // Check if 𝑒 can be extended to a solution

5 𝑀 [𝑝] ← 𝑀 [𝑝] ∪ {𝑒}

6 for 𝑝 ∈ 𝑃 − {𝜀} : // Propagate newly added expressions to other positions

7 𝑞, 𝜅 ← Parent(𝑝),Op(𝑝)
8 for 𝑒1 ∈ 𝑀 [𝑞𝜅1], . . . , 𝑒𝜏+ (𝜅 ) ∈ 𝑀 [𝑞𝜅𝜏+ (𝜅 ) ] : // Every combination of child expressions

9 if Φ𝑀
𝐼𝐼𝐼,𝑆

©«
⋃

𝑗∈[1..𝜏+ (𝜅 ) ]
(𝑞𝜅 𝑗 ↦→ 𝑒 𝑗 )

ª®¬ : // Check if 𝑒 𝑗 can be combined with 𝜅

10 𝑀 [𝑞] ← 𝑀 [𝑞] ∪ 𝜅 (𝑒1, . . . , 𝑒𝜏+ (𝜅 ) )

11 return𝑀 [𝜀]

where SndPref(E) represents the union of all SndPref(𝑝) for every 𝑝 in the domain of E. The
formula attempts to guess, for each position 𝑞 relevant to the bottom-up deduction from 𝑝 (a
position mentioned in E) to the root (i.e., all positions that are second prefixes of 𝑝), an output
value vector corresponding to inputs 𝐼𝐼𝐼 , such that the vectors together satisfy a series of conditions.
The first line states that the output vector at every position 𝑝 within E matches the outputs from
corresponding expression E(𝑝), and the output vector at the root position matches the expected
output from specification 𝑆 . The second line states that every parent position’s output vector
matches the outputs computed from its children’s output vectors. Below we illustrate how Φ𝑀

𝐼,𝑆

can be simplified in two concrete examples, and leave the more general discussion of automated
reasoning in Section 5.2.

Example 5.6. In line 4, we may check if a candidate expression 𝑒 can serve in position xor1, i.e.,
checking Φ𝑀

𝐼,𝑆
(E) with E = {xor1 ↦→ 𝑒}. Assume there is a single input-output example (i ↦→ 𝑜)

with arbitrary i and 𝑜 . Note that xor has two operands, while E just constrains the first operand to
be 𝑒 . Since xor is invertible, we can always set the second operand to be 𝑜 xor [[𝑒]] (i) to satisfy
Φ𝑀
𝐼,𝑆
. Thus Φ𝑀

𝐼,𝑆
(E) can be simplified as follows:

Φ𝑀
𝐼,𝑆 (E) ↔ ∃𝑥𝜖∃𝑥1∃𝑥2. 𝑥𝜖 = 𝑜 ∧ 𝑥1 = [[𝑒]] (i) ∧ 𝑥𝜖 = 𝑥1 xor𝑥2

↔ ∃𝑥2. 𝑥2 = 𝑜 xor [[𝑒]] (i)
↔ ⊤

Example 5.7. In line 9, we may already have 𝑒1 and 𝑒2 serving in positions xor1 and xor2,
respectively, and attempt to assemble an expression serving in 𝜖 . In other words, we check Φ𝑀

𝐼,𝑆
(E)

with E = {xor1 ↦→ 𝑒1, xor2 ↦→ 𝑒2} with a single input-output example (i ↦→ 𝑜), where 𝑒1, 𝑒2, i and
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𝜀

add1 add2

𝜀

xor1 xor2

𝜀

and1 and2

and2and1 and2and2

𝜀

or1 or2

or2or1 or2or2

Fig. 6. Trees of positions used for Bit-Vectors.

𝑜 are arbitrary. Here the two operands of xor are constrained to be 𝑒1 and 𝑒2, respectively. Since
all existential variables are set to a fixed value, Φ𝑀

𝐼,𝑆
(E) is all about whether 𝑒1 xor 𝑒2 matches the

output 𝑜 , which we formally present as follows:

Φ𝑀
𝐼,𝑆 (E) ↔ ∃𝑥𝜖∃𝑥1∃𝑥2. 𝑥𝜖 = 𝑜 ∧ 𝑥1 = [[𝑒1]] (i) ∧ 𝑥2 = [[𝑒2]] (i) ∧ 𝑥𝜖 = 𝑥1 xor𝑥2

↔ [[𝑒1]] (i) xor [[𝑒2]] (i) = 𝑜

After updating𝑀 , in the second loop, the algorithm further checks if Φ𝑀
𝐼𝐼𝐼,𝑆
(E) is satisfied by any

combination of child expressions within 𝑀 , and if so, add the corresponding composite expression
to the parent position.

Finally, the guessed partial solutions (as stored in𝑀 [𝜀]), if any, are returned to the main synthesis
algorithm.

Now let us see the algorithm solves Example 2.1. When we have 𝑃 = {𝜖, xor1, xor2}, the first loop
is checking Φ𝑀

𝐼,𝑆
({xor1 ↦→ 𝑒}) and Φ𝑀

𝐼,𝑆
({xor2 ↦→ 𝑒}). Similar to Example 5.6, both these predicates

are true for every expression 𝑒 . Thus,𝑀 [xor1] and𝑀 [xor2] will contain all enumerated expressions.
In the second loop, our algorithm will propagate our change to𝑀 [𝑝] in the first loop to the parent
position of 𝑝 . Here𝑞 and𝜅 can only be 𝜖 and xor. Thus, line 9 will checkΦ𝑀

𝐼,𝑆
(xor1 ↦→ 𝑒1, xor2 ↦→ 𝑒2)

for any enumerated expression 𝑒1 and 𝑒2, which, according to Example 5.7, is equivalent to checking
[[𝑒1]] (i) xor [[𝑒2]] (i) = 𝑜 for every input i and output 𝑜 . Since we know only 𝑒 is the new expression
added into 𝑀 , we only need to enumerate (𝑒1, 𝑒2) when either 𝑒1 or 𝑒2 is the new expression
𝑒 (i.e. 𝑒1 = 𝑒 or 𝑒2 = 𝑒), which, as we will explain later, can be further optimized into a hash
table look up. As shown in Figure 2, when we enumerated 𝑥 xor 𝜉 , the second loop found that
[[𝜉 ≪ 𝑘]] (i) xor [[𝑥 xor 𝜉]] (i) yields the output, which indicates that (𝑥 xor 𝜉) xor (𝜉 ≪ 𝑘) is a
solution to the problem.

5.2 Automating Bottom-Up Deduction for Bit-Vectors
At the core of Algorithm 2, the focal point lies in checking the formula Φ𝑀

𝐼𝐼𝐼,𝑆
(E). Obviously, checking

this quantified formula is prohibitively challenging in most cases. In the following discussion, we
elaborate on our approach to automating the verification process specifically for the theory of bit
vectors.

Choice of the position set 𝑃 . Recall that the algorithm is parameterized with a closed position set
𝑃 . When handling bit-vector synthesis problems, we use a fixed set 𝑃 which includes positions
as shown in Figure 6. Note that the position set is for the grammar defined in Figure 3. In the
case that some of the operators are missing in the user-provided grammar, we simply ignore the
corresponding skeletons. Below are several justifications behind the choice of the set:
• We include invertible binary operators within the bit-vector theory, including add and xor .
Simply put, for these operators, if one operand can be uniquely determined if the other
operand and the result of the operation are known. Therefore, we can perform quantifier
elimination for Φ𝑀

𝐼𝐼𝐼,𝑆
(E) and verify the formula efficiently.
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• Likewise, we include other operators and and or as they lend themselves to relatively easier
verification of Φ𝑀

𝐼𝐼𝐼,𝑆
(E). Furthermore, considering the likelihood of and and or being utilized

in long sequences of conjunction or disjunction, we include chained positions (e.g., and2and1
and or2or2) within set 𝑃 up to a prescribed depth bound. In order to mitigate the risk of
overfitting, we set the depth bound to 3.
• We exclude operators such as shl, udiv, and mul as they are less commonly used and cannot
be handled efficiently. In practice, including these operators frequently leads to a decline in
overall performance. Similarly, we opt to exclude sub from the set since it can be effectively
substituted by a combination of add and neg. Adding positions for sub introduces unnecessary
overhead.

Quantifier elimination for invertible operations. Now we present how Φ𝑀
𝐼𝐼𝐼,𝑆
(E) can be effectively

checked when E involves a single invertible, associative and commutative operator (such as add or
xor) through quantifier elimination.

Definition 5.8 (Invertible Operator). An operator 𝜅 : 𝐷𝑛 → 𝐷 is invertible if for every 𝑗 ∈ [1..𝑛]
and every sequence of values 𝑑0, . . . , 𝑑 𝑗−1, 𝑑 𝑗+1, . . . , 𝑑𝑛 ∈ 𝐷 , there exists a unique value 𝑑 𝑗 such that
𝑑0 = 𝜅 (𝑑1, . . . , 𝑑𝑛).

Definition 5.9 (Diverging Position Set). A set of positions 𝑃 is diverging if there exist three positions
𝑝 , 𝑞 and 𝑞′ and two elements 𝜅 𝑗 and 𝜅′𝑗 ′ such that 𝜅 ≠ 𝜅′, and both 𝑝𝜅 𝑗𝑞 and 𝑝𝜅′

𝑗 ′𝑞
′ are in 𝑃 .

Definition 5.10 (Independent Position Set). A set of positions 𝑃 is independent if there do not exist
two positions 𝑝, 𝑞 ∈ 𝑃 such that 𝑝 ∈ Prefixes(𝑞) − {𝑞}.

Theorem 5.11. Let 𝜅 be an invertible, associative and commutative operator, and let E be a finite
map from positions to expressions such that Domain(E) is non-diverging and independent. If for every
𝑝 ∈ Prefixes(𝑞) − {𝜀}, Op(𝑝) is 𝜅. Then Φ𝑀

𝐼𝐼𝐼,𝑆
(E) is false if and only if:

• for every position 𝑞 ∈ SndPref(E), there exists a position 𝑝 ∈ Domain(E) such that 𝑞 is a prefix
of 𝑝 ; and
• for every example (𝑖𝑖𝑖 ↦→ 𝑜) ∈ 𝑆 , applying 𝜅 over all J𝑒K(𝑖𝑖𝑖) values with 𝑒 stored in E does not
yield the expected output from 𝑆 .

Proof. As per Φ𝑀
𝐼𝐼𝐼,𝑆
, we need to construct an output vector for position 𝜀 and for every position

𝑝 ∈ Domain(E), as witnesses of the quantified variables 𝑥 ’s. The output vector for 𝑝 must be the
outputs from J𝑒K. Then we can propagate the values to other positions: if all children of a parent
position are filled, their output vectors can be combined using 𝜅 and then assigned to the parent
position.
After this propagation, if the root position 𝜀 is already filled, that means every position in

SndPref(E) is assigned an output vector determined by its descendants in Domain(E) (i.e., the first
bullet’s condition), then the whole formula is false if and only if the output vector for 𝜀 does not
match the expected outputs from 𝑆 (i.e., the second bullet’s condition).
Otherwise, if the root position 𝜀 is not filled, we can simply fill 𝜀 with outputs copied from the

specification 𝑆 for matching input, and then assign output vectors for all other unfilled positions in
a top-down fashion. Once a position 𝑞’s output vector is determined, we can determine the outputs
for each child position 𝑝 . If 𝑝 has other siblings unfilled, we can fill it with arbitrary outputs. If 𝑝
does not have any unfilled siblings, as 𝜅 is invertible, the outputs of 𝑝 can be determined by the
outputs of 𝑞 and 𝑞 child positions other than 𝑝 . Once all positions are filled, the whole assignment
witnesses the validity of the formula. □
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Example 5.12. Recall Example 5.6 where E = {xor1 ↦→ 𝑒}. As xor is an invertible, commutative
and associative operator, and the single-position map E does not satisfy the first bullet’s condition
in Theorem 5.11, the formula Φ𝑀

𝐼𝐼𝐼,𝑆
(E) is always true.

Consider another example, E = {add1 ↦→ 𝑒1, add2add1 ↦→ 𝑒2, add2add2 ↦→ 𝑒3}. This time
E satisfies the first bullet’s condition. Therefore, by Theorem 5.11, the formula is true if the
sum of all 𝑒𝑖 ’s always matches the expected output in 𝑆 . Formally, Φ𝑀

𝐼𝐼𝐼,𝑆
(E) is true if and only if∧

𝑖𝑖𝑖∈𝐼𝐼𝐼 , (𝑖𝑖𝑖 ↦→𝑜 ) ∈𝑆
𝑜 = [[𝑒1]] (𝑖𝑖𝑖) + [[𝑒2]] (𝑖𝑖𝑖) + [[𝑒3]] (𝑖𝑖𝑖).

Simplification with and & or. Now we discuss our simplification for and and or . We use or to
illustrate our method. The same approach is also applied to and. Φ𝑀

𝐼𝐼𝐼,𝑆
can be simplified as follows.

By replacing 𝑥𝑖𝑖𝑖1 with [[𝑒]] (𝑖𝑖𝑖), we get ∃𝑥𝑖𝑖𝑖2. ( [[𝑒]] (𝑖𝑖𝑖) or 𝑥𝑖𝑖𝑖2) = 𝑜 , which is basically equivalent to
[[𝑒]] ⊑ 𝑜 .2 Similarly, we can simplify the constraints for other positions of the or operator in
a similar manner. The detailed process of simplification is omitted here, but it follows the same
principle as the simplification for or1:

Φ𝑀
𝐼𝐼𝐼,𝑆 ({or1 ↦→ 𝑒}) ↔

∧
𝑖𝑖𝑖∈𝐼𝐼𝐼 , (𝑖𝑖𝑖 ↦→𝑜 ) ∈𝑆

∃𝑥𝑖𝑖𝑖𝜀∃𝑥𝑖𝑖𝑖1∃𝑥𝑖𝑖𝑖2. 𝑥𝑖𝑖𝑖𝜀 = 𝑜 = (𝑥𝑖𝑖𝑖1 or 𝑥𝑖𝑖𝑖2) ∧ 𝑥𝑖𝑖𝑖1 = [[𝑒]] (𝑖𝑖𝑖)

↔
∧

𝑖𝑖𝑖∈𝐼𝐼𝐼 , (𝑖𝑖𝑖 ↦→𝑜 ) ∈𝑆
∃𝑥𝑖𝑖𝑖𝜀∃𝑥𝑖𝑖𝑖1∃𝑥𝑖𝑖𝑖2. ( [[𝑒]] (𝑖𝑖𝑖) or 𝑥𝑖𝑖𝑖2) = 𝑜 ↔

∧
𝑖𝑖𝑖∈𝐼𝐼𝐼 , (𝑖𝑖𝑖 ↦→𝑜 ) ∈𝑆

[[𝑒]] (𝑖𝑖𝑖) ⊑ 𝑜

Since𝑀 [or1] = 𝑀 [or2or1] = 𝑀 [or2or2], we maintain a single or-list 𝐿or to represent all these
sets. 𝐿or will contain all enumerated expression that [[𝑒]] (𝑖𝑖𝑖) ⊑ 𝑜 for every example (𝑖𝑖𝑖 ↦→ 𝑜) ∈ 𝑆 .
Similarly, for and, we also maintain a and-list 𝐿and in the memory. We will use 𝐿or and 𝐿and in
propagation process as well.
Now we discuss the propagation process for or. First, we need to propagate expression twice:

once for 𝑀 [or2], and once for 𝑀 [𝜖]. However, because 𝑀 [or2] is symbolically equals to 𝐿or ∪
{𝑒1 or 𝑒2 |𝑒1, 𝑒2 ∈ 𝐿or}, we don’t actually maintain any data structure for 𝑀 [or2]. Thus, the two
propagation can be merged into a single one, by propagate from𝑀 [or1],𝑀 [or2or1] and𝑀 [or2or2]
to𝑀 [𝜀] using a 3-operands and operator. In that case, predicate Φ𝑀

𝐼𝐼𝐼,𝑆
in line 9 can be simplified as

follows:

Φ𝑀
𝐼𝐼𝐼,𝑆 ({or1 ↦→ 𝑒1, or2or1 ↦→ 𝑒2, or2or2 ↦→ 𝑒3}) ↔

∧
(𝑖𝑖𝑖 ↦→𝑜 ) ∈𝑆

𝑜 = [[𝑒1]] (𝑖𝑖𝑖) or [[𝑒2]] (𝑖𝑖𝑖) or [[𝑒3]] (𝑖𝑖𝑖)

We only need to propagate when 𝐿or list is updated. When 𝑒 is added to 𝐿or, we propagate 𝑒 to
𝑀 [𝜀]. We assume 𝑒 is 𝑒1 in line 8, while 𝑒2 and 𝑒3 need to be enumerated from 𝐿or. When we find
𝑒2 and 𝑒3 satisfy 𝑜 = [[𝑒]] (𝑖𝑖𝑖) or [[𝑒2]] (𝑖𝑖𝑖) or [[𝑒3]], 𝑒 or 𝑒2 or 𝑒3 will be propagated to𝑀 [𝜀].

6 IMPLEMENTATION
We have specialized the synthesis approach set forth in the paper and implemented it in our
SyGuS solver DryadSynth. We implement our techniques in Rust with around 6K lines of code.
Our tool is publicly available online.3 Below we outline several noteworthy design choices and
optimizations employed during the implementation.

2⊑ represents bit-wise implication operation on bit-vectors: 𝑎 ⊑ 𝑏 ↔ ∀𝑖 .𝑎𝑖 −→ 𝑏𝑖
3https://github.com/purdue-cap/DryadSynth
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Sampling and hashing. An excessive number of input-output examples hardly helps distinguish
solutions but imposes a substantial burden to multiple steps of the synthesis algorithm, such
as checking observational equivalence, looking up candidate expressions in a position, etc. that
are not all necessary for obtaining the correct solution. In light of this, DryadSynth takes a
randomly selected subset of inputs from the specification 𝑆 to be used in the synthesis process. This
subset also serves as the sample inputs 𝐼𝐼𝐼 required by Algorithm 2. The ideal size of the sample set
depends on how complicated the synthesis problem is. DryadSynth makes the number of samples
configurable, and the default value in our system is 8. Note that large sample sets could make
case-splitting using ExtractD in Algorithm 2 nearly impossible. Thus, in our implementation, we
use ExtractD ∪ ExtractI in place of Extract.

For the fixed sample input set, we maintain a hash table for checking observational equivalence,
which enables us to look up any existing expressions indexed by the output vector within the sample
set. We reuse the same hash table for deduction of invertible operators. It is worth noting that the
hashing process constitutes a significant portion of the overall synthesis time. DryadSynth utilizes
the Fowler–Noll–Vo hasher [Fowler et al. 1991] instead of the Rust default hash table, and can
potentially enhance the performance by approximately 1.5× for simple Case-splitting benchmarks.

SMT solving. DryadSynth employs Bitwuzla [Niemetz and Preiner 2020] as the underlying SMT
solver for solving bit-vector queries. We observe that on some unsatisfiable queries (i.e., verifying a
correct solution), the solver may hang for hours or even longer without returning a result. As most
satisfiable queries can be solved in negligible time, we set a timeout threshold of 10 seconds. If the
solver exceeds this time limit, we assume the result to be unsat.

Heuristics for bit-wise operations. As mentioned in Section 5.2, the size of 𝐿or (𝐿and) can sometimes
be large, which puts a great threat for DryadSynth’s performance. Thus, in our implementation,
we maintain a mask𝑚𝑚𝑚 ⊑ 𝑜𝑜𝑜 (𝑚𝑚𝑚 ⊒ 𝑜𝑜𝑜), which represent all bits that can be covered by any expression
in 𝐿or (𝐿and). When adding a new expression 𝑒 to the list, we will filter out all expressions that
within𝑚𝑚𝑚: [[𝑒]] ⊑𝑚𝑚𝑚 ( [[𝑒]] ⊒𝑚𝑚𝑚 ). With this technique, we can ensure that 𝐿or (𝐿and) is small (usually
less than 200 entries).

Based on our observation on Hacker’s Delight benchmarks and SyGuS-Comp benchmarks, most
of the shift operator use a terminal as the second operand. For example, in Example 2.1, every
second operand of shift operator is either𝑚 or 𝑘 . Thus, in DryadSynth, we automatically rewrite
user-provided grammar to restrict the second operand to a terminal expression (either a constant
or a variable).

ChatGPT configuration. In our implementation, we carefully configure ChatGPT parameters
through the OpenAI API. The temperature is set to 0.5 to rule out most irrelevant answers, while the
max_token is set to 3,000 to ensure that the outputs remain within a manageable size, guaranteeing
an optimal response time.
As ChatGPT queries are time-consuming, we run the traditional search method and the

ChatGPT guided search in parallel. By employing this hybrid approach, we can guarantee near-
instantaneous solutions for simpler problems while simultaneously leveraging the benefits of
ChatGPT guided search for more complex problem instances.

7 EXPERIMENTAL RESULTS
To evaluate the effectiveness of our synthesis approach, we have conducted extensive experiments
with DryadSynth and compare it with state-of-the-art SyGuS solvers. All of our experiments were
conducted on a Linux machine with two Intel Xeon E5 10-core 2.2GHz CPUs and 128GB of memory.
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7.1 Experimental Setup
Benchmarks. Wegrab bit-vector benchmarks from the-state-of-art solvers from 3 sources: i) Hacker’s
Delight benchmark, ii) Case-splitting PBE benchmark (2018 version), and iii) Deobfuscation Bench-
mark. The culmination entails a collective of 1,273 benchmarks to be evaluated.
• Hacker’s DelightWe grab all 15 difficulty-5 (d5) Hacker’s Delight benchmarks from SyGuS-
Comp, and 5 additional benchmarks from Probe [Barke et al. 2020], 20 problems in total. We
excluded some of the benchmarks from Probe as some operators used in these benchmarks
are not supported by DryadSynth and other solvers. For testing our ChatGPT-guided
algorithm, we add a single line description of each benchmark based on the comments on
its SyGuS format file in SyGuS-Comp. For example, our description for problem hd-20 is
“compute next higher unsigned number with the same number of 1 bits.” We have encountered
some benchmarks that incorrectly use 64-bit integers while the desired output is 32-bit
programs. To ensure accurate problem description for ChatGPT, we have corrected these
issues and adjusted the benchmarks to reflect the correct specifications.
• Case-splitting PBE benchmark We use the 2018 version of PBE-BV track of SyGuS-Comp
as our case-splitting benchmark. The competition benchmark consists of 753 benchmarks
which involves case-splitting among 10-1000 input-output examples. Note that we use the
standard grammar from Case-splitting PBE track, which is actually smaller than difficulty 5
grammar of Hacker’s Delight.
• Deobfuscation Benchmark We use the deobfuscation benchmarks from Simba to further
test our methods, including 500 challenging deobfuscation problem. These problems aim
at finding programs equivalent to randomly generated bit-manipulating programs from
input-output examples, and have been used to evaluate the state-of-the-art deobfuscators.

ChatGPT Model. In all our experiments, we use ChatGPT version gpt-3.5-turbo with tempera-
ture 0.5.

Compared solvers. We compare our method with existing solver: CVC4, Duet, Probe and Simba.
As Probe doesn’t assemble case-splitting, we don’t use it for the Case-splitting PBE Benchmark.
• CVC4 [Barrett et al. 2011] is a well known SMT solver with the capabilities of SyGuS solving.
The solver won the 2017–2019 SyGuS competitions in the BV track.
• Duet [Lee 2021] is a tool for inductive SyGuS problems that employs a bidirectional search
strategy with a domain specialization technique called top-down propagation. Top-down
propagation is a divide-and-conquer strategy that recursively decomposes a given synthesis
problem into multiple subproblems. It requires inverse semantics operators that should be
designed for each usable operator in the target language.
• Probe [Barke et al. 2020] performs a bottom-up search with guidance from a probabilistic
model. Such a probabilistic model can be learned just in time during the search process by
learning from partial solutions encountered along the way. Thus, such a model can be viewed
as a result of domain specialization for each problem instance.
• Simba [Yoon et al. 2023] extend the Duet method with iterative forward-backward abstract
interpretation. It uses iterative forward-backward abstract interpretation as a powerful
technique to prune the partial programs.

7.2 Experimental Evaluation
We evaluate DryadSynth on all the benchmarks and compare it with CVC4, Duet, Probe and
Simba. For each instance, we measure the running time of synthesis and the size of the synthesized
program, using a timeout of 10 minutes. Overall, DryadSynth outperforms other solvers across
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(a) Unsolved benchmarks. (b) Uniquely solved Benchmarks.

Fig. 7. Summary of experimental results.

major performance metrics, including the number of solved problems, execution time, and solution
size. The full experimental results can be found in the supplemental material.

Figure 7a shows the number of unsolved benchmarks by each solver, break down by benchmark
category. Because Probe is not applicable to the Case-splitting PBE benchmarks, it is not included
in the Case-splitting category. As shown in the figure, DryadSynth can solve all the benchmark
from the Hacker’s Delight category and the Case-splitting category, while all other solvers have
some unsolved benchmarks in each category. For the Deobfuscation benchmarks, DryadSynth
still solves more than all other existing approaches. In Figure 7b, we illustrate the number of
benchmarks that can be uniquely solved by each solver. Notably, CVC4 and Probe do not have
any uniquely solved benchmarks in our setting, so they are not included in the chart. Among the
solvers considered, DryadSynth stands out by solving 31 entirely new benchmarks, including 5
well-known challenging Hacker’s Delight benchmarks. In comparison, Simba and Duet only have
3 and 4 uniquely solved benchmarks, respectively. These results highlight the generalizability and
scalability of our method in addressing challenging bit-vector problems.

• Hacker’s Delight Figure 8 depicts the time for each solver employed in solving each various
Hacker’s Delight benchmark. To ensure robustness, we conducted 3 independent trials
for each benchmark-solver combination. We show the median result of 3 different trials.
DryadSynth solves all Hacker’s Delight benchmarks, including the hardest benchmark
hd-25. This shows the effectiveness of DryadSynth on hard bit-manipulating programs.
• Case-splitting PBE Figure 9 illustrates the remarkable performance of DryadSynth in
addressing the benchmarks. Notably, DryadSynth shows its capability not only in success-
fully solving all the benchmarks, but also in requiring less computational time. Moreover, it
demonstrates its proficiency in generating more concise solutions, particularly for the more
challenging instances.
• Deobfuscation Figure 10 shows that DryadSynth outperforms existing methods when
it comes to the Deobfuscation benchmarks. DryadSynth outperforms all other solvers by
solving more benchmarks while utilizing significantly less of computational time.

Table 1 shows results for several sample benchmark problems, which shows DryadSynth gen-
erally generates small programs. DryadSynth generates slightly larger results for some of the
problems such as hd-15, though, due to the utilization of bottom-up deduction.
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Fig. 8. Solving time for Hacker’s Delight benchmarks.

(a) Solving time. (b) Solution size.

Fig. 9. Solving time and solution size per benchmark in increasing order (Case-splitting).

(a) Solving time. (b) Solution size.

Fig. 10. Solving time and solution size per benchmark in increasing order (Deobfuscation).

7.3 Ablation Studies
To assess the individual contributions of expedited enumeration techniques and bottom-up deduc-
tion in enhancing performance, we conducted a comparative analysis between the complete version
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Table 1. Solving time and solution size for 12 chosen problems.

Category Benchmark
CVC4 Probe Duet Simba DryadSynth

[Barrett et al. 2011] [Barke et al. 2020] [Lee 2021] [Yoon et al. 2023]
Time Size Time Size Time Size Time Size Time Size

Hacker’s
Delight

hd-05 7.2 5 1.0 5 0.3 5 0.1 5 0.0 5
hd-15 TO 171.4 9 206.8 12 TO 0.1 12
hd-20 TO TO TO 375.5 15 58.5 15
hd-25 TO TO TO TO 162.2 45

Case-splitting

PRE-107-10 0.1 32 0.1 28 0.2 50 0.0 33
PRE-121-10 6.1 40 4.5 54 1.7 65 0.1 36
PRE-40-10 0.1 76 2.3 86 0.4 94 0.0 21

PRE-icfp-gen-13.15 0.5 174 9.9 310 3.2 337 0.0 77

Deobfuscation

target-15 1.3 10 2.3 7 0.2 10 0.4 10 0.0 7
target-192 59.6 14 6.5 10 0.5 15 0.5 14 0.0 11
target-305 TO Err TO TO 166.1 42
target-356 TO TO TO 449.0 20 11.5 15

Fig. 11. Ablation studies for Hacker’s Delight benchmarks.

of DryadSynth and other alternative versions. For Hacker’s Delight benchmarks, we compare
the complete version with 3 versions in Figure 11. In these 3 versions, we turn off graph-based
enumeration, LLM-guidance and bottom-up deduction correspondingly. For Case-splitting and
Deobfuscation benchmarks, we provided detailed comparison between the complete version and
other two versions in Figure 12. First we compare the complete version with the version without
bottom-up deduction in Figures 12a and 12b. And then Figures 12c and 12d depict the compari-
son between the version with expedited enumeration only and the baseline version without any
optimization.

Bottom-up deduction. As shown in Figure 11, with the help of bottom-up deduction, DryadSynth
solved 4 more problems in Hacker’s Delight benchmark. Moreover, Figures 12a and 12b highlight
the effectiveness of our bottom-up deduction method for the Case-splitting and Deobfuscation
benchmarks. The deduction technique is highly effective for Deobfuscation benchmarks due to
the prevalence of invertible operators, which can be easily deduced using our approach. However,
its effectiveness is relatively lower for Case-splitting benchmarks, as these benchmarks involve
numerous bit-wise shift operations that are challenging to deduce. Moreover, the solutions generated
by deduction for Case-splitting benchmarks are often small and can already be efficiently obtained
through our expedited enumeration techniques.

Expedited enumeration. We now discuss the effectiveness of expedited enumeration, including term-
graph-based enumeration, example-guided filtration, and LLM-enhanced grammars. For Hacker’s
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(a) Bottom-up deduction for Case-splitting. (b) Bottom-up deduction for Deobfuscation.

(c) Expedited enumeration for Case-splitting. (d) Expedited enumeration for Deobfuscation.

Fig. 12. Ablation studies for Case-splitting and Deobfuscation benchmarks.

Delight benchmarks, as shown in Figure 11, with the help of LLM-guidance, DryadSynth solved 4
more hard problems: hd-22, hd-23, hd-24 and hd-25. Our observations indicate that the guidance
of large language models played a pivotal role in the resolution of these benchmarks. For example,
the common solution of hd-23 is excessively large (size 249), beyond the capabilities of plain
enumeration. Large language models successfully generated a branch of useful subexpressions,
which lead to a much simpler version of the problem, solved in 84 seconds.

For other benchmarks, LLM-enhanced grammars are not present as a natural language description
of the tasks are not available. In other words, The expedited enumeration includes term-graph-
based enumeration and example-guided filtration only. As shown in Figure 12c, with expedited
enumeration alone, DryadSynth was able to solve all the Case-splitting PBE benchmarks, includ-
ing 9 benchmarks that could not be solved by the baseline version. Note that the Case-splitting
benchmarks often involve non-trivial constants, and our term-graph-based enumeration approach
can be highly efficient for solving such cases. For the Deobfuscation benchmarks, however, as
depicted in Fig 12d, our expedited enumeration had mixed effects and did not clearly improve
the performance. We believe this can be explained by the fact that Deobfuscation benchmarks
generally have less shared expressions compared to other two categories. For example, our solution
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(a) All Case-splitting benchmarks. (b) Hardest 10% of Case-splitting PBE benchmarks.

Fig. 13. Effectiveness of sample size.

Table 2. Three runs of DryadSynth on hd-25 with 20 trials of ChatGPT interaction in each run
(✓/✗: whether the results contain all subexpressions in Figure 4).

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Run #1 ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓
Run #2 ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓
Run #3 ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓

for target-55 has size 25, which is even larger than the solution for the Example 2.1 presented
earlier, but doesn’t have any shared subexpressions.

Sampling. Our sampling method generally proves to be effective, as evidenced by the results de-
picted in Figure 13. DryadSynth with 8 samples, as a sweet spot, consistently outperforms both
DryadSynth with 64 samples and DryadSynth with no samples across a range of benchmarks.
However, it is worth noting that DryadSynth with just 1 sample introduces a substantial overhead
for some of the most challenging benchmarks (see Figure 13b). Figure 13a showcases the overall
time performance, while Figure 13b specifically focuses on the top 10% hardest benchmarks from
Figure 13a. These results highlight the trade-off between sampling size and computational over-
head, emphasizing the importance of finding an optimal balance in order to achieve the desired
performance outcomes.

Effectiveness of Clustering in LLM-guidance. The uncertainty of LLM output can be a threat to the
reproducibility of our approach; that is also one of the reasons we adopt the clustering method as
described in Section 4.3. We examined the effectiveness of our clustering method through a single
benchmark, hd-25. Table 2 summarizes the results from three DryadSynth runs on hd-25. Each
run involves 20 independent trials of ChatGPT interaction, each with three randomly chosen input-
output examples. We indicate whether these results contain the specific subexpressions shown in
Figure 4 using the checkmark symbol ✓/✗. As shown in the table, the anticipated subexpressions
are present in at least 6 trials of each run, surpassing the threshold of 4 occurrences. The result
shows that DryadSynth can consistently produce the same result for challenging tasks such as
hd-25.
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8 RELATEDWORK
Enumerative synthesis. Enumerative program synthesis is widely recognized for its effectiveness,
with solvers like CVC4 [Barrett et al. 2011] being regarded as top performers in the SyGuS-Comp
competition. Enumerative synthesizers explore vast search spaces and employ various techniques
to prune the search space efficiently. One common technique for search space pruning in bottom-
up enumeration is observational equivalence (OE) [Albarghouthi et al. 2013; Udupa et al. 2013],
which has been successfully applied in many bottom-up synthesizers, including DryadSynth.
Other bottom-up solvers, such as CVC4 [Barrett et al. 2011; Nötzli et al. 2019], generate and
optimize rewrite rules to accelerate equivalence checking in bottom-up enumeration. For top-
down enumeration, there exist various syntactic and semantic pruning techniques. For example,
EuPhony [Lee et al. 2018] uses a weaker version of OE that compares the complete parts of
incomplete programs observationally and their incomplete parts syntactically.

In recent years, researchers have explored different enumeration orders based on learning-based
methods. For instance, Probe [Barke et al. 2020] utilizes just-in-time learning to guide the search
based on a probabilistic model. It employs probabilistic context-free grammars (PCFG) and assigns
scores to each production rule based on the learning context. EuPhony [Lee et al. 2018] incorporates
a learned context in the form of a probabilistic higher-order grammar (PHOG), which provides more
information to the model. DeepCoder [Balog et al. 2017] guides enumeration using a “Sort and
add” scheme, prioritizing the most probable functions and adding less probable functions when the
search fails. However, these methods do not effectively leverage natural language information and
may struggle to guide enumeration for complex bit-manipulation problems.

Deductive synthesis. There is a range of work that embodies deduction to program synthesis.
Illustratively, 𝜆2 [Feser et al. 2015] and FlashMeta [Polozov and Gulwani 2015] have employed
deduction, employing inverse semantics or refutation, to deconstruct the synthesis task and direct
the program search;Morpheus [Feng et al. 2017] and Neo [Feng et al. 2018] leverage deduction
to efficiently curtail the search space traversed during enumeration. For bit-vector problems,
Brahma [Gulwani et al. 2011] embodies component-based synthesis which views synthesis problem
as a wiring problem between given components (operators). By represent the wiring problem as
SMT constraints, Brahma can solve hard bit-manipulation problem. However, Brahma requires
each component appear once in the solution, which means user have to provide guidance on how
many times a single operator will be used in a solution.

Meet-in-the-middle synthesis. In recent years, several approaches have been proposed that explore
program synthesis from both directions. DryadSynth [Huang et al. 2020] adopts a repetitive
approach of subdividing synthesis problems into distinct subproblems, which are then addressed
through deduction or enumeration techniques in isolation. However,DryadSynth is not specialized
for example-based synthesis and does not support bit-vector synthesis. FlashFill++ [Cambronero
et al. 2023] is recent work that allows DSL designers to provide additional guidance by cutting
the grammar in the middle, thus decomposing the synthesis problem. Their system focuses on
synthesizing string transformations only. Duet [Lee 2021] combines bottom-up enumeration with
top-down propagation, harnessing the expressions generated from the bottom-up process as integral
components for the top-down framework. The key different between their top-down propagation
and our bottom-up deduction is that, the top-down propagation considers all enumerated expres-
sions for decomposition, while the bottom-up deduction maintains a candidate set for each position,
and considers only expressions that can potentially lead to successful deduction. Simba [Yoon et al.
2023] introduces forward-backward abstract interpretation as a powerful technique to further prune
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the search space using input-output examples. While above methods leverage various search-space
pruning techniques, they all perform traditional syntax-tree-based enumeration only.

Combining conditions and expressions. There are some research devoted to synthesizing conditional
expressions. EuSolver [Alur et al. 2017] view the problem of combining expressions and conditions
as a multi-label decision tree problems, and uses information-gain based heuristics to learn compact
decision trees. Besides the term-graph-based enumeration, our Algorithm 1 is very similar to
EuSolver’s enumeration. One distinction is that we employ example-based filtration and eagerly
discard useless expressions and conditions that do not contribute to any example. PolyGen [Ji et al.
2021] presents synthesis through unification (STUN) which unifies terms after all set of terms are
synthesized, and provides theoretically guarantee of Occam learning.

E-graph-based Enumeration. A line of research [Nandi et al. 2021; Polozov and Gulwani 2015;
Reynolds et al. 2019] uses e-graph for enumeration, which resembles our graph-based enumeration
technique. The most important difference between term graphs and e-graphs is that term graphs
only merge shared terms and e-graphs also merge semantically equivalent terms under a theory.
However, checking equivalence for terms and rules can be very expensive, especially for example-
based synthesis problems which are the focus of this paper. The fact that DryadSynth outperforms
other tools (e.g., CVC4 which performs theory rewriting [Reynolds et al. 2019]) seems to suggest
that e-graphs and rewrite rules may not provide significant benefits in the realm of bit-vector
synthesis; but further investigation in future research is needed.

9 CONCLUSIONS AND FUTUREWORK
We have presented enhanced enumeration techniques for syntax-guided synthesis of bit-vector
manipulations. We addressed the challenges associated with the complexity of bit-vector synthesis
by proposing a novel synthesis approach that incorporates various factors to guide the enumeration
process. The techniques, including term-graph-based enumeration, example-guided filtration,
guidance from large language models, expedite the synthesis process and improve scalability.
Furthermore, the incorporation of bottom-up deduction enhances the enumeration algorithm by
considering subproblems that contribute to the deductive resolution. The implementation of our
techniques in the DryadSynth solver demonstrated superior performance compared to state-of-
the-art solvers.

While our methodology is primarily tailored for bit-vectors, we believe the techniques introduced
in this paper can be extended to address challenges in other syntax-guided synthesis problems
that encounter similar difficulties. For example, in the domain of strings, string concatenation is
an invertible operator. Through a bottom-up deductive approach, we may concatenate two string
expressions to form a solution immediately after both the two expressions are enumerated. However,
our approach cannot be directly employed for loop-based operators like map and foldLeft, which
are crucial for solving some string and data-processing problems. To handle these operators,
supplementary mechanisms are needed.

Our approach of using large language models (LLMs) for guidance has the potential to be applied
in various domains. The LLM-based methods will be especially suitable for string problems, as
text-based inputs often contain a lot of information that can be understood and utilized by a
powerful language model. However, LLMs typically capture the general picture while neglecting
specific instances, necessitating the incorporation of additional mechanism to split the examples
using ITE operator. Furthermore, LLMs are often slow and costly. When dealing with extensive
input, it is imperative to select valuable data points fed into the LLMs.
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