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Abstract
Syntax-guided synthesis (SyGuS) aims to find a program sat-
isfying semantic specification as well as user-provided struc-
tural hypotheses. There are two main synthesis approaches:
enumerative synthesis, which repeatedly enumerates pos-
sible candidate programs and checks their correctness, and
deductive synthesis, which leverages a symbolic procedure
to construct implementations from specifications. Neither
approach is strictly better than the other: automated deduc-
tive synthesis is usually very efficient but only works for
special grammars or applications; enumerative synthesis is
very generally applicable but limited in scalability.

In this paper, we propose a cooperative synthesis tech-
nique for SyGuS problems with the conditional linear integer
arithmetic (CLIA) background theory, as a novel integration
of the two approaches, combining the best of the two worlds.
The technique exploits several novel divide-and-conquer
strategies to split a large synthesis problem to smaller sub-
problems. The subproblems are solved separately and their
solutions are combined to form a final solution. The tech-
nique integrates two synthesis engines: a pure deductive
component that can efficiently solve some problems, and a
height-based enumeration algorithm that can handle arbi-
trary grammar. We implemented the cooperative synthesis
technique, and evaluated it on a wide range of benchmarks.
Experiments showed that our technique can solve many chal-
lenging synthesis problems not possible before, and tends to
be more scalable than state-of-the-art synthesis algorithms.
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1 Introduction
Syntax-guided synthesis (SyGuS) is a common theme under-
lying many program synthesis systems. The insight behind
SyGuS is that to synthesize a large-scale program automati-
cally, the user needs to provide not only a semantic specifica-
tion but also a syntactic specification, i.e., a grammar of candi-
date programs as the search space. SyGuS has seen great suc-
cess in the last decade, including the Sketch [39, 41, 43] syn-
thesizer and the FlashFill feature of Microsoft Excel [20, 21].
The research community has also developed a standard inter-
change format for SyGuS problems and organized an annual
competition, which encourages a plethora of syntax-guided
synthesizers [1, 7].

The community usually categorizes synthesis techniques
into two classes1: enumerative synthesis — which systemati-
cally enumerates possible implementations of the function
to be synthesized and checks if it satisfies the desired speci-
fication; and deductive synthesis — which tries to reduce the
specification to a desired program, purely symbolically by
applying a series of deductive rules. Neither strategy clearly
outperforms the other.

Enumerative synthesis traverses the search space follow-
ing a specific strategy. The simplest strategy begins the
search from smaller-sized candidates and moves toward
1E.g., see Sec 1.1 of [23], Lectures 2 and 17 of [42], and Table 2 of [19].

https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3385412.3386027


PLDI ’20, June 15–20, 2020, London, UK Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang

larger-sized candidates. This naïve strategy guarantees to
produce the smallest possible program, and is proven effi-
cient for a wide spectrum of syntax-guided synthesis tasks.
For example, EUSolver [6] adopts this strategy and has been
the winner of the general track in 2016 and 2017 SyGuS com-
petition [4, 5]. Other search strategies may perform better
for different classes of problems. Stimulated by earlier suc-
cess stories and the community’s effort of standardization
and competition [1, 7], researchers have proposed many
novel search strategies, including abstraction-based [13, 15,
24, 25, 31, 48], stochastic enumeration [37, 38], constraint-
based [40, 44] and learning-based [8, 29]. Note that the ap-
pealing programming-by-example (PBE) and counterexample-
guided inductive synthesis (CEGIS) techniques can also be
viewed as a class of enumerative synthesis: the synthesizer
is given a set of input-output examples and the search will
be restricted to the programs whose behavior matches the
given examples. As an example, LoopInvGen [30] leverages
a learning-based variant of the CEGIS framework and won
the invariant track in 2017 and 2018 SyGuS competition [3, 5].
Despite these algorithmic innovation, enumerative search is
difficult to scale to large programs, because the search space
grows exponentially with the size of the program.

Deductive synthesis is the oldest form of synthesis, dating
back to Manna andWaldinger’s field-defining paper [28] and
even earlier work of Burstall and Darlington [9]. The deduc-
tion process essentially accepts a specification S and builds
a constructive proof for the theorem “there exists a program
satisfying S .” Representative examples include Spiral [34],
Paraglide [47], Fiat [12] and SusLik [32]. In general, the com-
monly known challenge for this paradigm of synthesis is
the degree of automation, because critical steps of rule appli-
cations for synthesizing sophisticated programs, e.g., those
involving loops, still rely on some guidance from the user. In
recent years, researchers have automated deductive synthe-
sis to symbolic synthesis procedures for several classes of
synthesis problems, which run very efficiently. For example,
CVC4 [35] embodies a symbolic synthesis algorithm called
CEGQI to handle a class of integer arithmetic synthesis prob-
lems with the so called single invocation properties, and
won the CLIA track of SyGuS competition four years in a
row [7]. However, these procedures usually focus on synthe-
sis problems in special domains with fixed grammars, and
not applicable to more general synthesis tasks with arbitrary,
user-provided grammars.

In recent years, the community has recognized the power
of combining enumeration and deduction for synthesis [14–
16, 33]. Nonetheless, existing techniques are not directly
applicable to SyGuS for arbitrary grammars. In this paper,
we focus on the class of SyGuS problems with the CLIA back-
ground theory but arbitrary grammar, and seek novel and
amenable synergies of enumeration and deduction.We present
a cooperative synthesis technique which switches between

the two synthesis strategies to push the scalability. We de-
velop several divide-and-conquer strategies to split a large
synthesis problem to smaller subproblems. The subproblems
are solved separately and their solutions are combined to
form a final solution. The technique integrates two synthesis
engines: a pure deductive component for efficiently solv-
ing/simplifying the current problem whenever possible, and
a height-based enumeration algorithm, as the last resort for
handling arbitrary problem instances.
In this paper, we show our technique performs better

than existing algorithms, and successfully solves many chal-
lenging problems not possible before. We summarize the
contributions of this paper as below:

1. a cooperative synthesis framework that splits a
synthesis problem into subproblems which are solved
by deduction or enumeration separately (Section 3);

2. three novel divide-and-conquer strategies which
allow splitting awide variety of sophisticated synthesis
problems (Section 4);

3. a height-based enumeration algorithm that splits
the search space based on the height of the tree repre-
sentation of the program and searches for each height
symbolically (Section 5);

4. a set of general deductive rules that are powerful
enough to solve/simplify many synthesis problems
(Section 6);

5. the cooperative synthesis technique has been embod-
ied in a SyGuS solver called DryadSynth, which
solved more benchmarks than state-of-the-art solvers
in every class of benchmarks, and tended to be more
scalable for sophisticated benchmarks. 58 out of 715
benchmarks were solved uniquely by DryadSynth
(Section 7).

2 Preliminaries
2.1 Syntax-Guided Synthesis
Definition 2.1 (Language). A language L is a tuple (Σ, τ )
where Σ is an alphabet and τ maps every n-ary function
name f ∈ Σ to its signature τ (f ) ∈ {Bool,U}n+1 (where U
represents a universe). An L-expression is an expression
over symbols from Σ that conforms to their signatures τ . An
L-term is an L-expression of type U . An L-formula is a
boolean L-expression.

Definition 2.2 (Background Theory). A decidable back-
ground theory T with respect to a language L is a set of
L-formulae such that there is a decision procedure that takes
a quantifier-free Σ-formula φ(x) as input, and determines
if T |= φ, generates a counterexample vector C such that
T ̸|= φ(C), if such anC exists.

Example 2.3. Consider a language ({0, 1,+,−, ≥, ite}, τ ),
where τ (0) = τ (1) = (Z) as both 0 and 1 are constants,
τ (+) = τ (−) = (U ,U ,U ) as they are binary functions over
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U , τ (≥) = (U ,U , Bool) as ≥ is a binary relation. And finally,
ite represents the if-then-else combination of a formula and
two terms; therefore τ (ite) = (Bool,U ,U ,U ). Then we let
CLIA denote the standard theory for this language inter-
preted over Z.

Definition 2.4 (Interpreted Function). An interpreted func-
tion for a language L is a tuple (f , Φ(x1, . . . , xn)), where f
is the function name, and Φ(x1, . . . , xn) is a well-typed L-
expression, i.e., each xi is of typeU or Bool, and the whole
expression can be typedU or Bool.

Example 2.5. Consider a binary function qm in theCLIA the-
ory that returns the first non-negative argument. We declare
this interpreted function as (qm, ite(x1 < 0), x2, x1).

Now we define the expression grammar, which essentially
describes syntactic constraints for the expected program
using a context-free grammar.

Definition 2.6 (Expression Grammar). An expression gram-
mar G is a tuple (T ,R,N, S,P), where T is a background
theory with alphabet Σ, R is a set of interpreted functions
for L, N a set of non-terminal symbols (to be typed Bool or
U , denoted as Nb and Nu ), S ∈ N is the start symbol, and
P ⊆ N × Exprs(Σ,R,N) is a set of production rules of form
T → ϵ or T → r (a1, . . . ,an), where T ∈ N , r ∈ R ∪ Σ, ai is
a free variable or a non-terminal in N . Let JGK denote the
set of all expressions generated by G: {e | S −→

P

∗ e}.

Example 2.7. Consider all possible expressions built using
the qm function defined in Example 2.5, as well as variables
x,y, z, and arbitrary constants. We call these expressions
qm-normal form (QNF ). Then formally QNF can be defined
as an expression grammar

Gqm
def
= (CLIA , {qm}, {S}, S, {x,y, z},P)

where P is the set of production rules presented in Figure 1a.

Example 2.8. We define GCLIA as a special grammar. It
takes CLIA as the background theory and allows all standard
CLIA expressions.

Definition 2.9 (Uninterpreted Function). An n-ary unin-
terpreted function f is a sequence

(
(x1, t1), . . . , (xn, t1), rt

)
where every pair (xi , ti ) represents that the name of the i-th
argument is xi with type ti ∈ {Bool,U }, and rt ∈ {Bool,U }
is the return type of the function.

Example 2.10. To synthesize a ternary function max3, we
declare it as an uninterpreted function ((x,U ), (y,U ), (z,U ),U ).

Now we are ready to define the syntax-guided synthesis
(SyGuS) problem we address in this paper.

Definition 2.11 (SyGuS Problem). An instance of the Sy-
GuS problem is given by a tuple (T , f ,Φ,G) where T is a
background theory with alphabet Σ, f is an n-ary uninter-
preted function to be synthesized,Φ is a formula over Σ∪{ f },

S → 0 | 1 | S + S | S − S
S → qm(S, S)

(a) Grammar Gqm

S ′ → 0 | 1 | S ′ + S ′ | S ′ − S ′
S ′ → qm(S ′, S ′) | aux(S ′, S ′)

(b) Grammar G+qm

qm(x1, x2)
def
= ite(x1 < 0, x2, x1)

aux(x1, x2)
def
= ite(x1 ≥ x2, x1, x2)

(c) Interpreted functions

Figure 1. Production rules for Examples 2.7 and 3.2.

and G = (T ,R,N, {x1, . . . , xn},P) is an expression gram-
mar. A solution to the SyGuS problem is an expression E ≡
λx1, . . . , xn .e(x1, . . . , xn) such that: a) e(x1, . . . , xn) ∈ JGK;
b) Φ[E/f ] is valid, i.e., instantiating f with E makes Φ valid.
We use (T , f ,Φ,G) { E to denote that E is a solution to the
SyGuS problem (T , f ,Φ,G).

Example 2.12. Recall the max3 function declared in Exam-
ple 2.10. Now we want to find an implementation ofmax3 in
Gqm that matches the semantics of the authentic implementa-
tion in CLIA . This is a SyGuS problem (CLIA ,max3,Φ,Gqm)
where Φ is the specification for the synthesis task:

max3(x,y, z) = ite(x ≥ y∧x ≥ z, x, ite(y ≥ z,y, z)) (2.1)

One solution to this problem is the following expression

max3_sol def= λx,y, z.
(
z + qm(x − z + qm(y − x, 0), 0)

)
(2.2)

Remark: To simplify the presentation, we assume there is a
single function to be synthesized. However, the SyGuS defini-
tion can be easily extended to synthesize multiple functions.
In the rest of the paper, we omit the background theory T
when it is CLIA from the context. Unless stated otherwise,
we also assume the function to be synthesized is always f .
Then these components can be omitted from the tuples.

2.2 Counterexample-Guided Inductive Synthesis
The SyGuS problem is typically very challenging. Let
(T , f ,Φ,G) be a SyGuS problem. Note that the specifica-
tion Φ involves a vector of variables x , and the synthesizer
needs to find an implementation of f such that∀x .Φ(x) holds.
Checking this quantified formula is already undecidable for
most background theories.
A common approach to addressing this problem is the

Counterexample Guided Inductive Synthesis (CEGIS) frame-
work [40, 43]. The basic idea is that a set of representative
value assignments C is usually sufficient to find a solution
that works for all inputs. So the synthesis problem can be
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reduced to a constraint of the following form:

∃f .
∧
c ∈C

Φ(c) (2.3)

The setC is usually initialized to contain a random value. The
synthesizer tries to solve (2.3) and find a candidate expression
q. Then a verifier can check if the candidate works for all
inputs, i.e.,

T |= Φ[q/f ](x) (2.4)
Note that this query can be solved by the background de-
cision procedure. If true, then q is a valid solution and the
algorithm terminates; otherwise, a counterexample can be
found, and the algorithm continues by adding the counterex-
ample to C and the synthesizer tries to solve the inductive
constraint again. The loop repeats until it finds a valid solu-
tion or hits a timeout.

2.3 Invariant Synthesis
In this paper we also address invariant synthesis, a special
class of synthesis problems.

Definition 2.13 (Invariant synthesis problem). An invari-
ant synthesis problem can be represented as ∃inv∀xφ(inv;x),
where inv is the predicate to be synthesized and φ(inv;x) is
of the form

φ(inv;x) ≡
(
pre(x) → inv(x)

)
∧

(
inv(x) → inv(trans(x))

)
∧

(
inv(x) → post(x)

)
where pre(x) and post(x) are CLIA formulae , trans(x) de-
fines a vector of CLIA terms such that |trans(x)| = |x |.

Intuitively, (pre(x), trans(x), post(x)) represents a program
with a set of variables x . pre(x) and post(x) are the pre- and
post-conditions, respectively. trans(x) represents the iter-
ative transition: x := trans(x). The loop terminates when
trans(x) = x . The goal of the synthesis problem is to find
a loop invariant guaranteeing the partial correctness of the
program with respect to pre and post.

Example 2.14. Consider a simple program of increasing
variable x in a loop by 1 each iteration until it reaches 100:
int x = 0; while (x < 100) x = x + 1; assert x == 100;

The invariant synthesis problem for this program could be
encoded to the following way:

pre(x) ≡ (x = 0)
trans(x) ≡ ite(x < 100, x + 1, x)
post(x) ≡ (¬(x < 100) ⇒ (x = 100))

(2.5)

3 A Cooperative Synthesis Framework
In this section, we present a cooperative synthesis frame-
work as a novel synergy of enumerative and deductive syn-
thesis. In a nutshell, this framework encompasses a deductive
synthesis engine and an enumerative synthesis engine, and
solves synthesis problems by divide-and-conquer: it splits a

synthesis problem into subproblems and solves them sepa-
rately using deduction or enumeration.

3.1 Divide-And-Conquer Splitter
The cooperative synthesis framework features a divide-and-
conquer splitter. The common pattern for these strategies
is as follows: when the current synthesis problem p cannot
be directly solved, the algorithm tries to identify a simpler
problem (we call Type-A Subproblem) such that a solution to
it can help simplify p to an easier-to-solve problem (we call
Type-B Subproblem). We have identified several strategies
that divide the original problem into subproblems A and B
in different ways (see more details in Section 4).

Figure 2 illustrates the workflow of cooperative synthesis.
Given a synthesis problem p, the deductive synthesis engine
attempts to simplify/solve the input synthesis problem p
purely deductively. If p is not completely solved, the divide-
and-conquer splitter takes over and attempts to split the
problem using a strategy. If the problem is divisible, the
synthesis switches to the Type-A subproblem of p and starts
over from the deductive synthesizer.
Otherwise, as the last resort, the problem is sent to the

enumerative synthesizer. Notice that every possible solution
has a syntax-tree representation, and the synthesizer just
enumerates every height h and searches for syntax trees
of fixed-height h, starting from 1, until a solution is found.
Notice that this height-based enumeration guarantees to
find the smallest possible solution, which is critical for many
synthesis tasks that prefer compact solutions.

Whenever p is solved as a Type-A subproblem of another
parent problem, the solution is used to generate the corre-
sponding Type-B subproblem, for which the synthesis pro-
cedure repeats similarly.

3.2 Subproblem Graph
Notice that a problem can be split in multiple ways, split
problem can be further split, and a subproblem can be gen-
erated and shared between multiple parent problems. We
use a subproblem graph to represent the relations between
problems.

Definition 3.1 (Subproblem Graph). Given a SyGuS prob-
lem S , a subproblem graph with respect to S is a directed
acyclic graph (DAG) with a unique source (the node with no
incoming edge) such that:
• every node represents a SyGuS problem; in particular,
the source node represents S ;
• if there is an edge from the node representing P to the
node representingQ , thenQ is a type-A subproblem of
P based on any divide-and-conquer strategy described
in Section 6 (subterm-based, fixed-term-based, and
weaker-spec-based).

For example, Figure 3 shows the subproblem graph, in
which every node is annotated with the specification of the
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Deductive 
Synthesizer

Divide-and-Conquer 
Splitter

Type-A Subproblem of  p

Simplified Problem
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Fixed-Height 
Synthesizer
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Sibling Type-B 
Subproblem of  p

Problem  p
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Figure 2.Workflow of cooperative synthesis.

Φ ∧∆ ∧Ψ

Φ ∧∆ ∆ ∧Ψ

∆

source

P Q

R. . . . . .

Figure 3. Example of subproblem graph.

problem it represents. The source node represents the full
specification Φ ∧ ∆ ∧ Ψ. According to weaker-spec-based
division (see Section 4.3), there are two Type-A subproblems
Φ ∧ ∆ and ∆ ∧ Ψ, represented by the two successors P and
Q , respectively. Moreover, the two subproblems can be fur-
ther split to even simpler subproblems, among which R is
their common subproblem because the specification ∆ is the
common conjunct of P and Q .

3.3 Cooperative Synthesis Algorithm
Algorithm 1 presents the overall cooperative synthesis al-
gorithm. The algorithm takes as input a SyGuS problem
(f ,Φ,G) and maintains three data structures. PG is a sub-
problem graph with respect to the synthesis problem, ini-
tially built by buildGraph(f ,Φ,G) (line 2). The procedure
just builds a graph with a single source node representing Φ.
DedQueue is a queue of (sub)problems to be solved by deduc-
tion; EnumQueue is a priority queue of (sub)problems to be
solved by height-based enumeration. A (sub)problem of pri-
orityh is to be solved by fixed-height synthesis at heighth (cf.
Algorithm 2). Initially, EnumQueue is empty and DedQueue
contains the source node of PG only.
The main part of the algorithm is a cooperative loop

(lines 6–23) of deductive and enumerative synthesis which
ends when a solution to the original problem is found. In each
iteration of the loop, the algorithm dequeues one task p from
DedQueue orEnumQueue . As deductive synthesis has higher

input :A SyGuS problem (f ,Φ,G)
output :A solution λx .e(x), if any; otherwise ⊥

1 def cooperative-synth(f, Φ, G):
2 PG ← buildGraph(f , Φ, G)
3 DedQueue ← emptyQueue()

4 EnumQueue ← emptyPriorityQueue()

5 enqueue (DedQueue , PG.source)
6 repeat
7 if DedQueue , ∅ :
8 p ← dequeue (DedQueue); h ← 0
9 p.solution← deduct (p)

10 if p.solution = ⊥ :
11 p.succ← TypeASubproblems (p)
12 foreach c ∈ p.succ :
13 enqueue (DedQueue , c)
14 elif EnumQueue , ∅ :
15 (p,h) ← dequeue (EnumQueue)
16 p.solution← fixed-height (p, h)
17 if p.solution = ⊥ :
18 enqueue (EnumQueue , p, h + 1)
19 elif p , PG.source :
20 foreach t ∈ p.pred :
21 t ← TypeBSubproblem(t ,

p.solution)
22 enqueue (DedQueue , t )
23 until PG.source.solution , ⊥ ;
24 return PG.source.solution

Algorithm 1: Cooperative synthesis framework.

priority, the task p is always dequeued from DedQueue if it
is nonempty; otherwise from EnumQueue .
If p is from DedQueue (lines 7–13), it will be handled by

the deduct function which conducts pure deductive synthe-
sis (which will be elaborated in Section 6). Ifp can’t be solved,
the algorithm will expand PG with all possible type-A sub-
problems of p, adding each one as successor of the node
representing p. All these newly created problems will be
added to DedQueue for solving in future iterations. If p is
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from EnumQueue and has priority h (lines 14–16), the algo-
rithm invokes the fixed-height function (cf. Algorithm 2 in
Section 5) to find a solution of p at height h.

For both cases, if no solution top is found, the problemwill
be added back to EnumQueue with priority h + 1 (lines 17–
18). 2 Otherwise, if a solution of p is found, as long as p
is not the original problem, the solution will help simplify
every parent problem of p to the corresponding type-B sub-
problem. The algorithm does the simplification through the
TypeBSubproblem procedure and add the updated problem
to DedQueue for future iterations (lines 19–22).

Example 3.2. Let us consider Example 2.12 and see how
Algorithm 1 solves this problem. Recall that there is no spe-
cific rule in our deductive synthesis algorithm for the ad
hoc operator qm, hence the deduct function cannot solve
the original problem and adds it to EnumQueue . However,
the algorithm finds that the reference implementation has
a subterm ite(y ≥ z,y, z), which allows a subterm-based
division (cf. Section 4.1). Again, the deduct function cannot
solve subproblem A and add it to EnumQueue . Then in the
next several iterations, the fixed-height function takes over
and tries to find a height-1 solution of the original problem
or the subproblem and fails; when the height is moved up to
2, solution (4.1) is found for subproblem A and simplify the
original problem to subproblem B. Finally, fixed-height finds
a solution subproblem B at height 2 as well and combine the
two solutions to form the final solution to the whole problem,
as shown in Equation 4.2. The whole procedure takes only
4 seconds to solve this problem. In contrast, this problem
can be solved by neither height-based enumeration nor pure
deduction alone. State-of-the-art SyGuS solver CVC4 [35]
spent 28 minutes to solve it and EUSolver [6] timed out.

4 Divide-And-Conquer Strategies
In this section, we describe the three divide-and-conquer
strategies we developed for splitting SyGuS problems. The
cooperative synthesis technique can be extended with more
splitting strategies in the future. We explain each of them
through examples.

4.1 Subterm-Based Division
Let us start from subexpression-based division. Let us con-
tinue on Example 2.12. The solution to the SyGuS problem
(max3,Φ,Gqm) (Expression 2.2) has a large syntax-tree rep-
resentation (height 6 and size 13) and is difficult to be syn-
thesized. If a synthesizer is stuck with this problem, one may
wonder if it is possible to synthesize a simpler, auxiliary func-
tion equivalent to a subexpression of the target expression
(2.1). For example, can we synthesize an auxiliary function
aux such that aux(y, z) = ite(y ≥ z,y, z)? Then the original
synthesis problem has been divided into two subproblems:
2Note that h is set to 0 for the deduction case and the next search will be at
height 1.

• Subproblem A: synthesize the auxiliary function aux;
• Subproblem B: once an implementation of aux is found,
add aux to the grammar and synthesize f with the
new grammar.

For example, assume the following solution for Subproblem
A has been found:

aux(x1, x2)
def
= x1 + qm(x2 − x1, 0) (4.1)

Then we can extend the grammar Gqm with the new operator
aux. The grammar extension forms Subproblem B and allows
us to find the following solution:

f (x,y, z)
def
= aux(z, aux(x,y)) (4.2)

Note that both solutions (4.1) and (4.2) are small and easier
to be synthesized than the original problem, and inlining
the implementation of aux in (4.1) into (4.2) just yields the
expected solution (2.2).
Formally, this divide-and-conquer strategy is formulated

as the rule Subterm in Figure 4: when e ′ is a subexpression of
e (denoted as e ′ ≼ e), we first solve f (y) = e ′ as subproblem
A, then solve д(y, e ′) = e as subproblem B, which is simpler
than the original problem because д is allowed to use an
extra argument e ′.

4.2 Fixed-Term-Based Division
To understand fixed-term-based division, consider solving
Example 6.1 using the CEGIS algorithm. Suppose a candi-
date solution max2(x,y) is generated, even though it is not
the expected solution, the candidate allows us to divide and
simplify the synthesis problem. Notice that max2(x,y) is a
good implementation and satisfies the specification Φ when
the inputs to the program satisfies Φ[max2(x,y)/f ]. There-
fore, the synthesis problem can be divided into the following
subproblems:
• Subproblem A: synthesize a function д that satisfies
the specification only when the input does not satisfy
Φ[max2(x,y)/f ]. In other words, the specification for
д is Φ[max2(x,y)/f ] ∨ Φ[д/f ];
• Subproblem B: Combine max2(x,y) and the synthe-
sized function д to form an implementation that sat-
isfies Φ for all inputs, no matter Φ[max2(x,y)/f ] is
satisfied or not.

Formally, this divide-and-conquer strategy can be formu-
lated as the rule FixedTerm in Figure 4. Note that we apply
this strategy only when f (e) ∼ e ≼ Φ, whichmeans f (e) ∼ e
occurs in Φ and ∼ is an arbitrary connective.

4.3 Weaker-Spec-Based Division
We illustrate howweaker-spec-based divisionworks through
the loop invariant synthesis problem defined inDefinition 2.13.
Recall that the specification consists of three parts:
pre(x) → inv(x)︸              ︷︷              ︸

Φ

∧ inv(x) → inv(trans(x))︸                         ︷︷                         ︸
∆

∧ inv(x) → post(x)︸                ︷︷                ︸
Ψ
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Subterm
(T , f , f (y) = e ′,G) { P (T ,д,д(y, e ′) = e,G) { Q

(T , f , f (y) = e,G) { λy,y ′.Q(y,y ′)[P(y)/y ′]
if e ′ ≼ e

FixedTerm
(T ,д,Φ[e/f (e)] ∨ Φ[д/f ],G) { P (T , f , f (y,y ′) = ite(Φ[e/f (e)], e,y ′),G) { Q

(T , f ,Φ,G) { λy.Q(y, P(y))
if f (e) ∼ e ≼ Φ for a connective ∼

WeakerSpec
(T , f ,Ψ,G) { P (T ,д,Φ[λy.

(
P(y) ⊕ д(y)

)
/f ],G) { Q

(T , f ,Φ,G) { P ⊕ Q
if T |= Ψ ≼⊕ Φ

Figure 4. Deductive rules for divide-and-conquer.

When the whole synthesis problem is challenging and it is
hard to generate appropriate inv(x) to satisfy Φ, ∆ and Ψ in
tandem, one may divide the problem as follows:

• Subproblem A: synthesize an expression P(x) that sat-
isfies Φ ∧ ∆ (resp. ∆ ∧ Ψ);
• Subproblem B: synthesize an expressionQ(x) such that
P(x) ∧ Q(x) (resp. P(x) ∨ Q(x)) satisfies the original
specification Φ ∧ ∆ ∧ Ψ.

Notice that both the two subproblems have weaker speci-
fications than the original problem. Subproblem A is obvi-
ously easier as P(x) only needs to satisfy two of the all three
conjuncts. Subproblem B is also easier: imagine there is a
solution Q(x) to the original problem, it is also a solution to
the subproblem B.

In loop invariant synthesis, the solutions P andQ from the
subproblems are combined using conjunction or disjunction.
However, weaker-spec-based division allows the combina-
tion P andQ using arbitrary binary functor ⊕. Nowwe define
weaker specification in the most general way:

Definition 4.1 (Weaker Specification). Let (T , f ,Φ,G) be a
SyGuS problem where f ’s return type is τ , and let ⊕ be a bi-
nary functor whose two input functions and output function
are all of type τ , and ⊕ def

= λд1,д2.λy.E(д1(y),д2(y)) where
E(x,y) ∈ JG(x,y)K. Then Ψ is a weaker specification of Φ
with respect to ⊕, denoted as T |= Ψ ≼⊕ Φ, if the following
conditions hold:

1. T |= Φ→ Ψ;
2. T |= ∀д1,д2 : Ψ[д1/f ] ∧ Ψ[д2/f ] → Ψ[д1 ⊕ д2/f ];
3. T |= ∀д1,д2 :

(
Ψ[д1/f ]∧Ψ[д1⊕д2/f ]

)
→ (Φ[д1/f ] →

Φ[д1 ⊕ д2/f ]).

With this general definition, we formulate the weaker-
spec-based division as the rule WeakerSpec in Figure 4. Note
that the loop invariant synthesis example we discussed above
is just instances of the rule, in which ⊕ is instantiated to ∧
or ∨.

4.4 Soundness and Completeness
All divide-and-conquer rules in Figure 4 are sound, as readers
can verify. Although not all problems are splittable, these
rules are complete in the sense that whenever a divide-and-
conquer rule is applicable, the problem can be safely divided
into subproblems without missing any possible solution. We
formulate the completeness as the following theorem:

Theorem 4.2. Let Ω be a SyGuS problem, and let ΩA and
ΩB be a pair of subproblems obtained by dividing Ω using a
divide-and-conquer strategy. If Ω has a solution P , then P is
also a solution to ΩA and ΩB .

Proof. The completeness can be verified for each rule in Fig-
ure 4 separately. In particular, if the division is a Weaker-
Spec division with respect to a weaker specification Ψ ≼⊕ Φ,
then according to Definition 4.1, the first and second con-
ditions guarantee that P is also a solution to ΩA and ΩB ,
respectively. □

5 Fixed-Height Synthesis
Recall that the height-based enumeration algorithm sticks
to a fixed size/height limit and searches for a solution within
the limit symbolically, and gradually increase the limit when
a solution of smaller size can’t be found. While the algorithm
is straightforward, it has its own merit and the idea does not
seem be explored by any existing techniques. On the one
hand, it still guarantees to synthesize the smallest satisfying
program; on the other hand, it leverages as much power of
symbolic solving as possible. In this section, we elaborate
how the fixed-height synthesis component is implemented.

5.1 Concrete Height Enumeration
Algorithm 1 solves the fixed-height synthesis problem through
a function fixed-height. When the height of the solution’s
syntax tree is fixed to h, the synthesis problem is simplified
and usually can be solved purely symbolically. In Algorithm 2,
we present a simple implementation of fixed-height based on
the standard CEGIS framework [43]. The algorithm assumes
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input :A SyGuS problem p = (f ,Φ,G) and a
positive integer h

output :A solution λx .e(x) such that the syntax-tree
representation of e(x) is a full tree of height
h, if any; otherwise ⊥

// EΦ is the set of counterexamples for

spec Φ

1 def fixed-height(p, h) :
2 f ← p.target; Φ← p.spec; G ← p.grammar
3 if h = 1 :
4 EΦ ← ∅

5 q ← Init(G,h)
6 repeat
7 result ← verify(¬Φ[q/f ])
8 if result = unsat :
9 break

10 else:
11 EΦ ← EΦ ∪ {result}

12 q ← ind-synth(
∧
e ∈E

Φ[e/x], G, h)

13 until q = ⊥;
14 return q

Algorithm 2: Fixed-height synthesis.

there are function verify as the verifier and function ind-
synth as the inductive synthesizer for fixed-height solutions,
and maintains a set of counterexamples E. The algorithm
starts with a random candidate solution Init(G,h) (line 5). In
each following iteration, the synthesizer proposes a height-h
candidate solution q that satisfies the specification when x
is assigned values from E (line 12). Then the verifier checks
condition (2.4), i.e., whether the candidate satisfies the speci-
fication Φ (line 7). If the result is unsat, then q is the desired
implementation and the algorithm terminates; otherwise the
verifier reports a counterexample as the witness of the failed
verification and add it to E (line 11). Then the CEGIS loop
continues with the next iteration repeatedly, until a solution
is found.

Parallelization. While the naïve height-based enumer-
ation in Algorithm 1 incrementally searches all possible
heights of the decision tree, starting from 1, the enumeration
can be naturally parallelized. If there are n cores available on
the machine, the parallelized version runs the fixed-height
algorithm at n different heights on n threads while sharing
the set of counterexamples among themwith proper synchro-
nization. The algorithm starts with the n smallest heights,
{1, . . . ,n}. It also maintains a variable k as the next height
to search, starting from n + 1. Whenever a thread concludes
that there is no solution at the current height, it starts a new
CEGIS loop at height k , and the value of k gets increased. The
whole algorithm stops whenever a thread finds a solution.

Int Const Vector: ci Int Const: di
Atom Expr: e ::= ci · x + di
Atom Cond: α ::= e ≥ 0
Expr: E, E1, E2 ::= e

�� ite(α, E1, E2)
Condition: φ ::= α

�� ite(α,φ1,φ2)

Figure 5. Decision tree normal form.

c1 : (1, 0, 0) c2 : (0, 1, 0)

c0 : (1,−1, 0)

true false

Figure 6. Representation of themax2 function.

5.2 Symbolic Inductive Synthesis
In Algorithm 2, verify is just the standard background de-
cision procedure, and ind-synth is an inductive synthesizer
with the assumption that the solution’s height is up to h. In
our framework, this synthesis task is encoded and symboli-
cally solved by the background decision procedure. We first
illustrate the idea with the assumption that the grammar is
GCLIA , then extend the encoding to arbitrary grammar G.

DecisionTreeRepresentation. Let the input SyGuS prob-
lem be (f ,Φ,GCLIA ), then any implementation of f can be
represented in a decision tree normal form, as described in
Figure 5. It is not hard to see that every CLIA expression
can be converted to this normal form. The decision tree rep-
resentation of a CLIA expression is a binary tree in which
every node with id i contains a vector ci of integer constants
and an extra constant di . Then each decision node (non-leaf
node) tests whether ci · (x ⊕(1)) ≥ 0 and according to the test
result proceeds to the “true” child or “false” child. Each leaf
node determines the value of the function as ci · (x ⊕(1)). For
example, if f is a binary function and the solution is a binary
max function of height 2: f (x1, x2)

def
= ite(x1 ≥ x2, x1, x2). It

can be represented as the tree shown in Figure 6. Notice that
the full decision tree of height h consists of 2h − 1 nodes,
and the node id’s can be fixed in the range between 0 and
2h − 2. This allows us to reduce ind-synth to the problem of
searching for the vector ci for each node i .

Interpret Function. Then for a fixed height h, we can
build an interpreth function that interprets the vectors back
to the function of height h. For any function f of height h, its
decision tree can be represented as 2h−1 vectors c0, . . . ,c2h−1.
Then for any vector of constants d , interpreth essentially
interprets the decision tree on d and determines the value
of f (d). In other words, interpreth(c0, . . . ,c2h−1,d) = f (d).
For example, continuing on the example of Figure 6. Assume
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d = (1,−2), then the value of f (d) can be computed as:

interpret2(c0,c1,c2,d)
= ite

(
c0 · d ⊕ (1) ≥ 0, c1 · d ⊕ (1), c2 · d ⊕ (1)

)
= ite

(
c0 · (1,−2, 0) ≥ 0, c1 · (1,−2, 0), c2 · (1,−2, 0)

)
Now to solve ind-synth(

∧
e ∈E

Φ[e/x], G, h), we can replace

every occurrences of f in Φ[e/x]with a corresponding inter-
pret function. The resulting CLIA formula involves variables
c0,c1,c2 only and can be solved by a single SMT query.

Extension to General Grammar. We have generalized
above encoding to arbitrary grammar G . As an example, con-
sider the Gqm grammar defined in Figure 1a. In the decision-
tree representation, non-leaf nodes will represent the qm
function invocation, which can be interpreted by the follow-
ing adapted interpret2 function:

interpret2(c0,c1,c2,d)
= qm

(
interpret1(c1,d), interpret1(c2,d)

)
= ite

(
c1 · (1,−2, 0) < 0, c1 · (1,−2, 0), c2 · (1,−2, 0)

)
This generalization allows us to solve arbitrary SyGuS prob-
lems with the CLIA background theory (see theGeneral track
benchmarks in Section 7). We leave further generalization to
other background theories, e.g., bit vectors, to future work.

6 The Deductive Component
In this section, we introduce the deductive component of
the framework (i.e., the deduct function in Algorithm 1).
This component integrates a set of deductive rules that can
simplify the specification Φ or find a solution directly. The
implementation, as shown in Algorithm 3, just repeatedly
and exhaustively applies these rules to simplify the speci-
fication Φ. If the simplified Φ is already a solution (of the
form f (x1, . . . , xn) = e), return the solution; otherwise re-
turn ⊥. As deduction can be performed very efficiently, this
component serves as the first step for all (sub)problems.
Note that our deductive rules are designed as a compo-

nent for the cooperative synthesis framework, they are not
expected to be complete in any sense. That said, they are
already powerful enough to solve many synthesis problems.
For instance, the rules in Figures 7 and 8 have already super-
seded the class of Single Invocation Problems, a common class
of problems that can be solved using the counterexample-
guided quantifier instantiation algorithm [35].
We next present deductive rules that are general and ap-

plicable to arbitrary grammar, followed by special simpli-
fication for two special classes of problems. To the best of
our knowledge, these rules are not explicitly integrated in
any existing deductive synthesizer. Our framework can also
integrate more deductive rules in the future.

input :A SyGuS problem p = (f ,Φ,G)
output :A solution λx .e(x), if any; otherwise ⊥

1 def deduct(p):
2 f ← p.target; Φ← p.spec; G ← p.grammar
3 Φ← Simplify(f , Φ, G); p.spec← Φ

4 if IsSolution(Φ, G) :
5 return Φ

6 else:
7 return ⊥

Algorithm 3: Deductive synthesis.

IntEq
f (y) = e ∧ Ψ =⇒ f (y) = e ∧ Ψ[λy.e/f ]

IntNeq
f (y) , e ∨ Ψ =⇒ f (y) , e ∨ Ψ[λy.e/f ]

BoolPos
(f (y) ∨ Φ) ∧ Ψ =⇒ Ψ[λy.((¬Φ) ∨ f (y))/f ]

if f does not occur in Φ
BoolNeg
(¬f (y) ∨ Φ) ∧ Ψ =⇒ Ψ[λy.(Φ ∧ f (y))/f ]

if f does not occur in Φ
RemoveVar

Ψ =⇒ Ψ[0/yi ] if T |= Φ↔ Φ[y ′i/yi ]
RemoveArg

(f ,Φ,G) =⇒ (д,Φ[д(e,e ′)/f (e,C,e ′)],G)
if the i-th arg of f is always constant C

Match
(f , f (y) = e,G) =⇒ (f , f (y) = e ′,G)

if e =⇒∗
G
e ′ and e ′ ∈ JG(y)K

Figure 7. Deductive rules for arbitrary grammar.

General Deduction. Figure 7 shows a set of general de-
ductive rules for arbitrary grammar. Assuming f is the func-
tion to be synthesized, these rules soundly substitute occur-
rences of f , arguments or variables with a concrete imple-
mentation. Most of the rules are self explanatory. In partic-
ular, the last rule Match applies when the specification is a
reference implementation f (y) = e but e does not conform
to the grammar G. In that case, we can exhaustively match
and replace subexpressions of e with interpreted functions in
G, and check if the final expression falls in JGK. For example,
let e be x + x + x + x and let G be a grammar that contains
only one operator double(x) def= x +x , then e can be rewritten
to double(double(x)).

Merging and Substituting for CLIA.. For GCLIA , a very
common grammar for syntax-guided synthesis, we designed
a set of ad hoc rules as illustrated in Figure 8. Intuitively,
these rules find two occurrences of f and merge them into a
single occurrence.
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GeMax
f (e) ≥ e1 ∧ f (e) ≥ e2 =⇒ f (e) ≥ ite(e1 ≥ e2, e1, e2)
LeMin
f (e) ≤ e1 ∧ f (e) ≤ e2 =⇒ f (e) ≤ ite(e1 ≥ e2, e2, e1)
GeMin
f (e) ≥ e1 ∨ f (e) ≥ e2 =⇒ f (e) ≥ ite(e1 ≥ e2, e2, e1)
LeMax
f (e) ≤ e1 ∨ f (e) ≤ e2 =⇒ f (e) ≤ ite(e1 ≥ e2, e1, e2)
Eq
f (e) ≥ e1 ∧ f (e) ≤ e2 =⇒ f (e) = e1

if T |= e1 = e2
NotEq
f (e) ≥ e1 ∨ f (e) ≤ e2 =⇒ f (e) , e1 − 1

if T |= e1 = e2 + 2
CNF
(Φ ∨ Ψ1) ∧ (Φ ∨ Ψ2) =⇒ Φ ∨ (Ψ1 ∧ Ψ2)

if f does not occur in Ψ1 or Ψ2

Figure 8. Deductive rules for GCLIA .

f (x,y, z) ≥ x ∧ f (x,y, z) ≥ y ∧ f (x,y, z) ≥ z ∧(
f (x,y, z) = x ∨ f (x,y, z) = y ∨ f (x,y, z) = z

) CNF
===⇒

f (x,y, z) ≥ x ∧ f (x,y, z) ≥ y ∧ f (x,y, z) ≥ z
∧
(
f (x,y, z) ≥ x ∨ f (x,y, z) ≥ y ∨ f (x,y, z) ≥ z

)
∧
(
f (x,y, z) ≤ x ∨ f (x,y, z) ≤ y ∨ f (x,y, z) ≤ z

)
∧ . . .

GeMax,LeMax,...
=============⇒

f (x,y, z) ≥ ite(ite(x ≥ y, x,y) ≥ z, ite(x ≥ y, x,y), z)
∧ f (x,y, z) ≤ ite(ite(x ≥ y, x,y) ≥ z, ite(x ≥ y, x,y), z)

∧ . . .
Eq,IntEq
======⇒

f (x,y, z) = ite(ite(x ≥ y, x,y) ≥ z, ite(x ≥ y, x,y), z)
Match
=====⇒ f (x,y, z) = max2(max2(x,y), z)

Figure 9. Rewriting sequence for Example 6.1.

Example 6.1. Let G be a grammar with only an operator
max2(x,y) def= ite(x ≥ y, x,y). Our deductive synthesis algo-
rithm can synthesize a ternary maximum function f (x,y, z)
using the rewriting sequence shown in Figure 9.

Loop Summary for Invariant Synthesis. We also devel-
oped a special class of simplification rules for loop invariant
synthesis. The idea is to find a predicate that precisely sum-
marizes the effect of arbitrary k-steps of loop transformation.
Formally, if there exists a binary predicate fast-trans such
that

fast-trans(x,y) ⇔ ∃k ≥ 0.transk (x) = y

then the original specification can be reduced to a simpler
constraint:( (
pre(x)∧fast-trans(x,y)

)
→ inv(y)

)
∧

(
inv(y) → post(y)

)
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Figure 10. Solved benchmarks (breakdown by tracks).
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Figure 11. Fastest solved benchmarks (breakdown by
tracks).

For example, the loop transformation in Example 2.14 can
be summarized as:

fast-trans(x,y) ≡ (x < 100 ∧ x ≤ y) ∨ x = y

We have identified a class of Acyclic Translational loop
transformations for which such summarization exists and
the synthesis problem is decidable. We leave the details in
Appendix A of the supplementary material.

7 Experimental Evaluation
We have prototyped our cooperative synthesis technique as a
system called DryadSynth,3 which supports the CLIA back-
ground theory. DryadSynth is written in Java with around
11k LOC, and employs Z3 [11] as the constraint solving
engine. This is a relatively small and lightweight implemen-
tation in terms of engineering (Comparing to, e.g. 343k+ LOC
of the CVC4 code base and 33k+ LOC of the EUSolver code
base).
To evaluate our algorithms, we compared DryadSynth

with state-of-the-art SyGuS solvers, CVC4, EUSolver and
3https://github.com/purdue-cap/DryadSynth
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LoopInvGen. 4 They are winning solvers in recent years’
SyGuS competition and we used the latest version from their
public repositories. CVC4 and EUSolver are two general-
purpose solvers that participate in the General, CLIA and
INV tracks. LoopInvGen focuses on INV track only.

Experimental Setting. Experiments were conducted on
the StarExec platform [45], on which each solver is executed
on a 4-core, 2.4GHz CPU and 128GB memory node, with
a 30-minute timeout. We adopted 403 INV benchmarks, 88
CLIA benchmarks, and 224 General track benchmarks with
the CLIA background theory included in the SyGuS compe-
tition of 2019. 5 We excluded 372 General benchmarks that
are based on the BitVector background theory and 426 INV
benchmarks that contain let-macros, which DryadSynth
does not support at present. It wound up with all of 715
benchmarks.
We summarize the experimental results through a set of

figures. Figures 10 and 11 compare the number of bench-
marks correctly solved within the 30-minute limit and the
number of benchmarks solved the fastest among all solvers,
respectively. 6 Figure 12 shows the comparison of the solvers
in terms of the number of benchmarks solved and the total
amount of time spent. Figure 13 shows the amounts of time
spent for every benchmark, sorted in ascending order. All fig-
ures break down the comparison by tracks. It is noteworthy
that DryadSynth allows us to solve 58 benchmarks which
were not solvable by other synthesizers, while LoopInvGen
have 9 benchmarks uniquely solved. We list these bench-
marks and the time spent by DryadSynth to solve them in
Appendix B of the supplementary material.

Observation. Observing the figures, we are encouraged
by the following facts: 1) Figures 10 and 11 show that
DryadSynth solved and fastest solved more benchmarks
than all other solvers in all tracks. 2) Figure 12 indicates
that DryadSynth solved more CLIA and General bench-
marks than all other solvers, with less total time spent. 3)
Figure 13 shows that DryadSynth has better scalability than
all other synthesizers: although DryadSynth had a constant
overhead on easier-to-solve problems, the solving time in-
creases more mildly toward more challenging benchmarks
than other synthesizers.

In summary, our cooperative synthesis technique outper-
forms state-of-the-art synthesizers in both scalability and
diversity of the solved problems, and tends to be a general
and efficient synthesis engine for syntax-guided synthesis.

4We omitted other solvers as they focus on other background theories
and not comparable with ours. For example, while Euphony’s AI-guided
algorithm [26] is promising, it supports String and BitVector theories only,
and its old algorithm was not competitive in the CLIA theories.
5We slightly adapted 21 of General benchmarks to remove the let-macros.
6Following the criterion of SyGuS competition, the time
amounts are classified into buckets of pseudo-logarithmic scales:
[0, 1), [1, 3), [3, 10), . . . , [1000, 1800).
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Figure 12. Comparison of solvers on total solved bench-
marks and total solving time.

Remark: We also roughly compared the size of solutions
as our deductive component does not control the solution
size, as shown in Table 1. Based on the number of smallest
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Figure 13. Solving time per benchmark in increasing order.

solutions 7 and the median size of solutions for the com-
monly solved benchmarks, DryadSynth is slightly better
7Following the criterion of SyGuS competition, the size amounts are clas-
sified into buckets of pseudo-logarithmic scales: [1,10), [10,30), [30,100),
[100,300), [300,1000), ≥ 1000.

Table 1. Number of smallest solutions and median of solu-
tion size (in small text). Best numbers in grey.

Track DryadSynth CVC4 EUSolver LoopInvGen

INV 132 38 118 26 171 3 220 7

CLIA 56 278.5 56 361 67 201.5 -
General 141 19 124 19 166 19 -
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Figure 14. Cooperative synthesis vs. Plain height-based enu-
meration.
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Figure 15. Cooperative synthesis vs. Plain deduction.

than CVC4 but worse than EUSolver (purely enumerative)
and LoopInvGen (for INV track only).
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Figure 16. Vanilla DryadSynth vs. EUSolver-backed
DryadSynth.

Ablation Studies. To evaluate whether the combination
of enumerative and deductive synthesis improves the per-
formance, we also compare DryadSynth, in which the full-
fledged cooperative synthesis framework is implemented,
with our implementation of the plain height-based enumer-
ation synthesis algorithm (Algorithm 2), the plain deduc-
tive synthesis algorithm (Algorithm 3), and our cooperative
synthesis framework with the height-based enumeration
synthesis algorithm replaced by EUSolver, a representative
enumerative synthesizer.
Figure 14 compares the solving time of the full-fledged

cooperative synthesis framework and the plain height-based
enumeration synthesis algorithm on all benchmarks. As the
figure illustrates, with the help of divide-and-conquer de-
duction, our cooperative synthesis clearly outperformed the
plain height-based enumeration for the vast majority of all
benchmarks. The plain height-based enumeration procedure
performed slightly better for several easier-to-solve prob-
lems, though, as they are simple enough and divide-and-
conquer cannot help much.

Figure 15 shows the number of solved benchmarks by the
plain deductive synthesis algorithm (per category) and the
number of extra benchmarks solved with the help of the
height-based enumeration (per category). Figure 15 shows
that among all the benchmarks solved by the cooperative
synthesis framework, only 32.6% of them were solved by
pure divide-and-conquer deduction. The vast majority of
all benchmarks were further solved with the help of height-
based enumeration.

Figure 16 compares the amounts of time spent for bench-
marks between the vanilla DryadSynth and a version using
EUSolver as the enumerative synthesis component. In the
EUSolver-backedDryadSynth, every invocation to the fixed-
height synthesis algorithm (Algorithm 2) is replaced with a
query to EUSolver. As we could not find a proper way to con-
trol the search space when invoking EUSolver, the query to
EUSolver searches with unbounded height. Therefore, while
our height-based enumeration was parallelized, it became

ineffectual to parallelize EUSolver. We omitted those bench-
marks purely solved by the deductive synthesis algorithm.
That wound up with a comparison on 496 benchmarks. The
figure indicates that the vanilla DryadSynth consistently
performed better and solved 135 more benchmarks than the
EUSolver-backed DryadSynth.
In short, our studies show that the cooperation of our

enumerative and deductive algorithms improves the perfor-
mance from the standalone enumeration, and solves more
benchmarks than the standalone deduction. Our height-
based enumeration algorithm also performs better than an
existing enumeration algorithm when serving as the enu-
merative synthesis component.

8 Related Work
Syntax-Guided Synthesis. Aswementioned in Section 1,

the most important dimension along which we characterize
existing syntax-guided synthesis approaches is their synthe-
sis strategies. For example, among the winning SyGuS syn-
thesizers we compared with, EUSolver [6] adopts a purely
enumerative search strategy, and CVC4 [35] solves synthesis
problems purely symbolically through a procedure called
counterexample guided quantifier instantiation. The Counter-
example-Guided Inductive Synthesis (CEGIS) framework [40]
has been a common theme underlying several solvers which
differ in how the synthesizer generates candidates from coun-
terexamples: Sketch [39, 41] solves constraints that encode
the counterexamples; Alchemist [36] and ICE-DT [18] find
likely candidates using learning algorithms.
The decision tree representation for fixed-height synthe-

sis (Sec 5.2) is similar to the representations used in the
ICE-DT learning algorithm [18] and the enumerative search
algorithm underlying EUSolver [6]. Our decision tree for
CLIA (e.g., Figure 6) is different: it assumes a fixed height
for the decision tree and represents the whole function as a
vector of coefficients, and helps us encode the fixed-height
synthesis problem to a CLIA query.

A lot of general search-based algorithms for syntax-guided
synthesis have been developed in the past few years, in-
cluding learning-based ones [17, 18, 36] and enumerative
ones [2, 46]. Caulfield et al. [10] identified several decidable
fragments of synthesis problems in the theories of EUF and
BitVector. The SyGuS solver Euphony [26] predicts the like-
lihood of candidate programs, and enumerates them starting
from the most likely correct candidates. Their algorithm
focuses on theories of String and BitVector.

Combining Concrete and Symbolic Search. The idea of
height-based enumeration is inspired by a recent trend of
combining concrete and symbolic search, but differs from
existing approaches in the target program and/or the enu-
meration method.
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The work of Gulwani et al. [22] is, to the best of our knowl-
edge, the first attempt of combining enumerative and sym-
bolic search. Their system enumerates the number of com-
ponents and encodes each case as a symbolic constraint. The
Adaptive Concretization algorithm [24, 25] developed for
Sketch is another instance of enumerative-symbolic combi-
nation. As a Sketch-based algorithm, adaptive concretization
supports a general class of SyGuS problems. Its algorithm sta-
tistically determines a class of highly influential unknowns
and explicitly enumerates all possible values of these un-
knowns. Unlike our decision-tree-based enumeration, their
enumeration strategy is not supported by integer arithmetic
decision procedures and seems not competitive in synthesiz-
ing CLIA functions [4]. Synqid [31] synthesizes recursive
functional programs using an algorithm that enumerates
the top part of the program and synthesizes the remaining
part of the program through liquid abduction. Hades [48]
is a system that synthesizes transformations on hierarchical
data trees. A key component of Hades is an algorithm for
synthesizing path transformations from examples, which
enumerates all possible partitions of the examples, checks
the unifiability of each partitioned set using SMT solvers, and
combines the unifiers into a decision tree through machine
learning.

Our height-based enumeration is different: the shapes (or
sketches) of the syntax tree are not explicitly enumerated or
learned, but grouped by their heights and then enumerated
and solved symbolically. This is a nice combination as it still
guarantees to synthesize the smallest satisfying program
while leveraging more power of symbolic solving. To the best
of our knowledge, this idea is not explored by any existing
techniques.

Deductive Synthesis. There has been significant research
effort on deductive synthesis. Spiral [34] is an automatic sys-
tem that synthesizes digital signal processing algorithms
and programs. Paraglide [47] derives algorithms for concur-
rent programs from their sequential implementations using
domain specific knowledge to constraint the search space.
Fiat [12] also utilizes deductive synthesis to synthesize ab-
stract data types that package methods with private data. As
an interactive system, the synthesizer also requires user’s
guidance to help with the synthesis. Recently, Polikarpova
and Sergey [32] present SusLik as a deductive-based synthe-
sizer that generates imperative heap-manipulating programs.
The synthesizer takes a pair of pre- and post- conditions writ-
ten in separation logic as input and derives the programs
based on a set of deductive rules with structural constraints
of the heap baked in. Above deductive synthesizers are all de-
signed to serve a specific application and seem hard to extend
to other synthesis purposes, as domain specific knowledge
is critical for these systems. Our approach is more general
and not limited to a fixed grammar.

Combining Deduction and Enumeration. We are not
the first to combine deduction and enumeration. λ2 [16] and
FleshMeta [33] have used deduction in novel ways (inverse
semantics or refutation) to decompose the synthesis task and
guide the program search. They can be perceived as special
type-directed search algorithms [42] and comparable to other
search strategies. More recently, Morpheus [15] also com-
bines deduction and enumeration to synthesize programsma-
nipulating tabular data. Morpheus uses enumerative search
to find possible candidate programs and uses deduction to
prune the search space. With similar ideas, Neo [14] synthe-
sizes programs in several domains, including tabular data
transformation and list manipulation, by supplying a DSL of
the target domain. Our deduction-enumeration combination
is different from the techniques above: it repeatedly performs
divide-and-conquer and solves subproblems by deduction or
enumeration separately.
Li et al. [27] present a technique for searching proofs for

program correctness. They use abductive inference to decom-
pose the verification task to several lemmas then discharge
each lemma separately. Our idea of divide-and-conquer de-
duction is similar to their lemma abductive inference. The dif-
ference from the prior technique is that we focus on syntax-
guided program synthesis and design our own deductive
rules that are general enough for arbitrary grammars.

9 Conclusion
We introduced cooperative synthesis, a syntax-guided syn-
thesis technique in which enumerative and deductive synthe-
sis strategies are combined for solving SyGuS problems with
CLIA background. The framework repeatedly splits large
synthesis problems to smaller subproblems and have them
solved by a deductive synthesis engine or a height-based enu-
meration algorithm. Then the solutions are combined to form
a final solution. We found that, compared to state-of-the-art
synthesizers, cooperative synthesis has better scalability and
solved many benchmarks not possible before. This synthe-
sis technique may be extended to handle other background
theories in the future.
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