Dealing with Spills



does this always work!?

* Modified algorithm:

* If no node can be safely removed, pick one
anyway, mark it as a potential spill

)

* Keep going

* If graph still can’t be colored, need to deal with
spill




does this always work!?

* Modified algorithm:

* If no node can be safely removed, pick one
anyway, mark it as a potential spill

* Keep going @

* If graph still can’t be colored, need to deal with
spill

©



what do we do!

If a variable cannot be assigned to a register, it
needs to be placed on the stack

Need to generate extra instructions to
load/store from stack --- those instructions
need registers too!

Naive approach: reserve registers for managing
spills

Better approach:

()

/TD




code rewriting

* Assign spilled temporary to memory location
(e.g., T2)

* Introduce a new temporary for each instruction

that uses T2 @

T2=T0+TI

becomes

/TD

TI9=T0+TI
SW T19, [stack location of T2]



code rewriting

* Assign spilled temporary to memory location
(e.g., T2)

* Introduce a new temporary for each instruction

that uses T2 @

TI=T2+T3

becomes

/TD

LW T37/, [stack location of T2]
TI=T37+T3



code rewriting

* Assign spilled temporary to memory location
(e.g., T2)

* Introduce a new temporary for each instruction

that uses 12 @

* Rerun liveness analysis, register allocation
algorithm




code rewriting

Why does this help?
T2 is eliminated from the graph entirely G’O\

Newly introduced temporaries have very short
live range, so not too many edges!

Less likely to have spills

This is an example of live range splitting

T19

* Lots of refinement to reduce loads/stores



upshot

Global register allocation allows for variables to be mapped to the same register across
basic blocks

Live range splitting allows for efficient generation of spill code

Graph coloring-based allocation is effective but potentially slow

* |teration algorithm that keeps rewriting code, recomputing liveness, redoing allocation

Many modern compilers, especially |ITs, use simpler, but potentially less-efficient register
allocators (e.g., linear-scan register allocation)



what do we have!

* We now have a full-featured language:
* Arithmetic operations
* Control flow

* Functions
* And compiler:
* Code generation

* Register allocation

®* Good base to keep adding features!



next: module 3!



