
Dealing with Spills



does this always work?
• Modified algorithm:

• If no node can be safely removed, pick one 
anyway, mark it as a potential spill
• Keep going

• If graph still can’t be colored, need to deal with 
spill

A

C

D

B

E



does this always work?
• Modified algorithm:

• If no node can be safely removed, pick one 
anyway, mark it as a potential spill
• Keep going

• If graph still can’t be colored, need to deal with 
spill

T0

T3

T1

T2



what do we do?

• If a variable cannot be assigned to a register, it 
needs to be placed on the stack

• Need to generate extra instructions to 
load/store from stack --- those instructions 
need registers too!

• Naïve approach: reserve registers for managing 
spills

• Better approach: rewrite code 

T0

T3

T1

T2



code rewriting
• Assign spilled temporary to memory location 

(e.g., T2)

• Introduce a new temporary for each instruction 
that uses T2

 T2 = T0 + T1

 becomes

 T19 = T0 + T1

 SW T19, [stack location of T2]

T0

T3

T1

T2



code rewriting
• Assign spilled temporary to memory location 

(e.g., T2)

• Introduce a new temporary for each instruction 
that uses T2

 T1 = T2 + T3

 becomes

 LW T37, [stack location of T2]

 T1 = T37 + T3

T0

T3

T1

T2



code rewriting

• Assign spilled temporary to memory location 
(e.g., T2)

• Introduce a new temporary for each instruction 
that uses T2
• Rerun liveness analysis, register allocation 

algorithm

T0

T3

T1

T2



code rewriting

• Why does this help?

• T2 is eliminated from the graph entirely

• Newly introduced temporaries have very short 
live range, so not too many edges!
• Less likely to have spills

• This is an example of live range splitting 
• Lots of refinement to reduce loads/stores

T0

T3

T1

T37

T19



upshot

• Global register allocation allows for variables to be mapped to the same register across 
basic blocks

• Live range splitting allows for efficient generation of spill code

• Graph coloring-based allocation is effective but potentially slow
• Iteration algorithm that keeps rewriting code, recomputing liveness, redoing allocation

• Many modern compilers, especially JITs, use simpler, but potentially less-efficient register 
allocators (e.g., linear-scan register allocation)



what do we have?

• We now have a full-featured language:

• Arithmetic operations

• Control flow

• Functions

• And compiler:

• Code generation

• Register allocation

• Good base to keep adding features!



next: module 3!


