
Register Allocation Details



what to free?

• Some flexibility in this algorithm: when kicking a value out of a register, how do
you decide which register to free?

• Lots of choices, different implications!
• Ideal: want to kick out the value that causes the fewest downstream spills (e.g,

will be used the least in the future)
• Some simple tie-breaking ideas:
• First, prefer to kick out non-dirty values
• Second, prefer to kick out values that are going to be used farthest in the future



global variables
• Algorithms presented assume that loading a value into a register can be done in one

instruction
• Loading value from global variables may take multiple instructions
• Compute/load address for global: LA t1, <address of x>
• Load from address into register: LW t2, 0(t1)

• Some options to handle:
• Always allocate an extra register for global variable’s address, only free it when value 

is freed (easy, but can waste registers)
• Set aside register for address operations (even easier, but may require redundant 

address computations)
• Treat loading address into register as another 3AC operation to process



Aliasing, as usual, is a problem

• What happens with this code?

//a and b are aliased
LD R1 a
LD R2 b
ADD R3 R1 R2 R3
ST R3 c // c = a + b
R1 = 7 //a = 7
ADD R4 R1 R2
ST R4 d // d = a + b



Dealing with aliasing
• Immediately before loading a variable x

• For each variable aliased to x that is already in a dirty register, save it to memory 
(i.e., perform a store)

• This ensures that we load the right value

• Immediately before writing to a register holding x

• For each register associated with a variable aliased to x, mark it as invalid

• So next time we use the variable, we will reload it

• Conservative approach: assume all variables are aliased (in other words, reload from 
memory on each read, store to memory on each write)

• Better alias analysis can improve this



interaction

• Different optimizations interact with register allocation in different ways

• Peephole optimizations can reduce register pressure, can make allocation better

• CSE can actually increase register pressure (why?)

• Different orders of optimization produce different results

• Phase ordering is an open problem in compilers



next: global register allocation


