
Register Allocation



code generation until now

• When creating temporaries as you generate code, each temporary gets to sit in its
own register
• Temporaries are essentially “virtual” registers
• Real machines have a limited number of registers available for general purpose use
• Called architectural registers — registers addressable by instructions

(machines may have many more internal registers)
• RISC-V: 32 integer registers and 32 floating point registers
• But many of these registers are reserved for special purposes (stack pointer,

frame pointer, return address, etc.)
• In practice, fewer registers available

• What do you do with temporaries?



wouldn’t it be nice

• One extreme: all temporaries are registers
• No loads or stores required for temporaries
• All variables/local variables loaded in to registers at the beginning of a function,

saved back to memory at the end of the function
• No “extra” loads and stores required for multiple uses of the same variable
• But this runs into the limit on the number of registers!



simple code generation

• Code generation uses a lot of temporaries; treat each temporary as a local
variable that gets a spot on the stack
• Generate code for operations on temporaries the same way you generate code

for operations on variables:
• Load temporaries into registers
• Perform operation
• Store result in temporary
• How many registers does this need?

• Why is this bad?



middle ground

• One extreme doesn’t work (cannot keep all values in registers)
• The other extreme isn’t efficient (don’t want to keep loading/storing values)

• What if we pick some temporaries and variables to keep in registers?
• Use registers for values we need, or need often
• If we run out of space in registers, can spill registers to the stack (essentially,

go back to treating it as a local variable)

• This is register allocation



Global vs. local

• Same distinction as global vs. local register allocation

• Local register allocation is for a single basic block (BB)

• Global register allocation is for an entire function (but not 
interprocedural – why?)

• Will cover some local allocation strategies now, global allocation later



naïve register allocation

• For each basic block
• Find the number of references of each variable
• Assign registers to variables with the most references

• Details
• Keep some registers free for operations on unassigned variables and spilling
• Store dirty registers at the end of BB (i.e., registers which have variables assigned to 

them and whose value has changed)
• Do not need to do this for temporaries (why?)



drawbacks
• Suppose we only have two “extra”

registers for this code →

• What variables go into registers?
• Could we do better?

1: T1 = A + B
2: T2 = A + T1
3: T3 = A + T2
4: D = A + T3
5: T4 = C + B
6: T5 = T4 + D
7: E = T5 + D



drawbacks
• Suppose we only have two “extra”

registers for this code →

• What variables go into registers?
• Could we do better?

• Variables/temporaries that are dead
do not need to be in registers anymore!
• A and D can share a register
• And so can all the temporaries!

1: T1 = A + B
2: T2 = A + T1
3: T3 = A + T2
4: D = A + T3
5: T4 = C + B
6: T5 = T4 + D
7: E = T5 + D



next: local register allocation


