Liveness Analysis

propagating liveness

* Suppose we have a set of variables that are live at a particular point in the program

* What does it mean to “‘execute’ a statement backwards?

(0m
A=B*C(
{A, D}

propagating liveness

* Suppose we have a set of variables that are live at a particular point in the program

* What does it mean to “‘execute’ a statement backwards?

A=B*C(C

propagating liveness

* Suppose we have a set of variables that are live at a particular point in the program

* What does it mean to “‘execute’ a statement backwards?

A=B*C(L, = (Lo, —K)UG

propagating liveness

* Suppose we have a set of variables that are live at a particular point in the program

* What does it mean to “‘execute’ a statement backwards?

variables "generated”, or used, by a statement

Lin \

A=B*(L, =Ly, —K)UG

{A, D} Lou

variables "killed”, or defined, by a statement

liveness example

What is live in this code?

B, C
1: A=B + C %A, B%
2: C=A+8B (A, B, C}
3: T1 =B + C (A, B, C, TI}
4: T2 = T1 + C {A, B, C, T2}
PSRN o b
7 B=E+ D ECB:’C[:)’[E:;
8: A=C+0D {A’ Bi
9: T3 = A + B T’3
10: WRITE(T3) .3

U

what about aliasing!

Aliasing, as usual is a problem
Reminder: compilers must be conservative
Liveness is a may property — OK to say something is live when it isn’t

* This may be used in the future (even if it really won’t be)

Deal with aliasing by being conservative:
* A variable stops being live when it is written to

® Only kill variables that are definitely written to

next: finding dead code

