
Liveness Analysis

• Suppose we have a set of variables that are live at a particular point in the program

• What does it mean to “execute” a statement backwards?

propagating liveness

A = B * C

{???}

{A, D}

• Suppose we have a set of variables that are live at a particular point in the program

• What does it mean to “execute” a statement backwards?

propagating liveness

A = B * C

{B, C, D}

{A, D}

• Suppose we have a set of variables that are live at a particular point in the program

• What does it mean to “execute” a statement backwards?

propagating liveness

A = B * C 𝑳𝒊𝒏 = 𝑳𝒐𝒖𝒕 	− 𝑲 ∪ 𝑮

{B, C, D}

{A, D}

𝑳𝒊𝒏

𝑳𝒐𝒖𝒕

• Suppose we have a set of variables that are live at a particular point in the program

• What does it mean to “execute” a statement backwards?

propagating liveness

A = B * C 𝑳𝒊𝒏 = 𝑳𝒐𝒖𝒕 	− 𝑲 ∪ 𝑮

variables ”killed”, or defined, by a statement

variables ”generated”, or used, by a statement

{B, C, D}

{A, D}

𝑳𝒊𝒏

𝑳𝒐𝒖𝒕

liveness example

1: A = B + C
2: C = A + B
3: T1 = B + C
4: T2 = T1 + C
5: D = T2
6: E = A + B
7: B = E + D
8: A = C + D
9: T3 = A + B
10: WRITE(T3)

What is live in this code?

{}
{T3}
{A, B}
{B, C, D}
{C, D, E}
{A, B, C, D}
{A, B, C, T2}
{A, B, C, T1}
{A, B, C}
{A, B}
{B, C}

what about aliasing?
• Aliasing, as usual is a problem

• Reminder: compilers must be conservative

• Liveness is a may property → OK to say something is live when it isn’t

• This may be used in the future (even if it really won’t be)

• Deal with aliasing by being conservative:

• A variable stops being live when it is written to

• Only kill variables that are definitely written to

next: finding dead code

