
Live and Dead Code



• Some instructions don’t do anything (especially after other optimization has been 
done) and are dead code

• Difficulty: not always obvious that an instruction is dead: property is transitive

what is dead code?

1: A = B * C
2: A = C + X

First computation of A produces a value 
that won’t be used

1: A = B * C
2: B = C * A
3: D = A + B
4: E = D + A
5: E = 7

Instructions 1 through 4 are all dead, but
it’s hard to see that



• Some instructions don’t do anything (especially after other optimization has been 
done) and are dead code

• Difficulty: not always obvious that an instruction is dead: property is transitive

what is dead code?

1: A = B * C
2: A = C + X

First computation of A produces a value 
that won’t be used

1: A = B * C
2: B = C * A
3: D = A + B
4: E = D + A
5: E = 7

Instructions 1 through 4 are all dead, but
it’s hard to see that



turn it around: what is live?

• Easier to focus on the dual problem: what code is live

• A variable is live if it has a value that may be used in the future

• At any point in code, multiple variables can be live

• Question: how do you know what is going to happen in the future?

• Answer: go backwards!



executing backwards
• A variable is live if its value may be used in the future

• At the end of a basic block, we can make a good guess about what is live

• Temporaries are not live (they only get used during the execution of single 
statements, so are not used in the future)

• Local variables and global variables may be used elsewhere, so they are live

• If this block is the end of the whole program, nothing is live

• Can then propagate this information backwards



next: liveness analysis


