The Trouble with Aliasing



problem: aliasing

What happens if C is aliased to B?



Aliasing

One of the biggest problems in compiler analysis is to recognize aliases — different
names for the same location in memory

Aliases can occur for many reasons

* Pointers referring to same location, arrays referencing the same element,
function calls passing the same reference in two arguments, explicit storage
overlapping (unions)

Upshot: when talking about “live” and “killed” values in optimizations like CSE,
we’re talking about particular variable names

In the presence of aliasing, we may not know which variables get killed when a
location is written to



conservative approach

* Compiler optimization should be sound: should always generate correct code

* A compiler should only perform an optimization if it knows it will not break the
code

* The opposite is not true! A compiler can choose not to perform an optimization,
even if it is safe

® Sound approach in the case of pointers: assume worse-case scenario
* All pointers point to the same location; all references are aliased

* Writing to a variable kills all other variables that are references



Memory disambiguation

* Most compiler analyses rely on memory disambiguation
* Otherwise, they need to be too conservative and are not useful

* Memory disambiguation is the problem of determining whether two
references point to the same memory location

* Points-to and alias analyses try to solve this

* Will cover basic pointer analyses in a later lecture



