
The Trouble with Aliasing



problem: aliasing

T1 = A * B
C = 7
T2 = A * B

What happens if C is aliased to B?



Aliasing

• One of the biggest problems in compiler analysis is to recognize aliases – different 
names for the same location in memory

• Aliases can occur for many reasons

• Pointers referring to same location, arrays referencing the same element, 
function calls passing the same reference in two arguments, explicit storage 
overlapping (unions)

• Upshot: when talking about “live” and “killed” values in optimizations like CSE, 
we’re talking about particular variable names

• In the presence of aliasing, we may not know which variables get killed when a 
location is written to



conservative approach
• Compiler optimization should be sound: should always generate correct code

• A compiler should only perform an optimization if it knows it will not break the 
code

• The opposite is not true! A compiler can choose not to perform an optimization, 
even if it is safe

• Sound approach in the case of pointers: assume worse-case scenario

• All pointers point to the same location; all references are aliased

• Writing to a variable kills all other variables that are references



Memory disambiguation

• Most compiler analyses rely on memory disambiguation

• Otherwise, they need to be too conservative and are not useful

• Memory disambiguation is the problem of determining whether two 
references point to the same memory location

• Points-to and alias analyses try to solve this

• Will cover basic pointer analyses in a later lecture


