CSE Example
Example

Three address code

\[
\begin{align*}
T1 &= A + B \\
T2 &= T1 + C \\
T3 &= A + B \\
C &= T1 + T2 \\
T4 &= T1 + C \\
D &= T3 + T2
\end{align*}
\]

Available expressions:
Example

Three address code

\[
\begin{align*}
T1 &= A + B \\
T2 &= T1 + C \\
T3 &= A + B \\
C &= T1 + T2 \\
T4 &= T1 + C \\
D &= T3 + T2
\end{align*}
\]

Optimized code

\[
T1 = A + B
\]

Available expressions: [A+B, T1]
Example

Three address code

\begin{align*}
 T1 &= A + B \\
 T2 &= T1 + C \\
 T3 &= A + B \\
 C &= T1 + T2 \\
 T4 &= T1 + C \\
 D &= T3 + T2
\end{align*}

Optimized code

\begin{align*}
 T1 &= A + B \\
 T2 &= T1 + C
\end{align*}

Available expressions: \([A+B, T1] [T1+C, T2]\)
Example

Three address code

\[
\begin{align*}
T1 &= A + B \\
T2 &= T1 + C \\
T3 &= A + B \\
C &= T1 + T2 \\
T4 &= T1 + C \\
D &= T3 + T2
\end{align*}
\]

Optimized code

\[
\begin{align*}
T1 &= A + B \\
T2 &= T1 + C \\
T3 &= T1
\end{align*}
\]

Available expressions: [A+B, T1] [T1+C, T2]
Example

Three address code

\[
\begin{align*}
T1 &= A + B \\
T2 &= T1 + C \\
T3 &= A + B \\
C &= T1 + T2 \\
T4 &= T1 + C \\
D &= T3 + T2
\end{align*}
\]

Available expressions: \([A+B, T1], [T1+C, T2], [T1+T2, C]\)

Optimized code

\[
\begin{align*}
T1 &= A + B \\
T2 &= T1 + C \\
T3 &= T1 \\
C &= T1 + T2 \\
T4 &= T1 + T2 \\
D &= T3 + T2
\end{align*}
\]
Three address code

T1 = A + B
T2 = T1 + C
T3 = A + B
C = T1 + T2
T4 = T1 + C
D = T3 + T2

Optimized code

T1 = A + B
T2 = T1 + C
T3 = T1
C = T1 + T2
T4 = T1 + C

Available expressions: [A+B, T1], [T1+T2, C], [T1+C, T4]
Example

Three address code

\[
\begin{align*}
T1 &= A + B \\
T2 &= T1 + C \\
T3 &= A + B \\
C &= T1 + T2 \\
T4 &= T1 + C \\
D &= T3 + T2
\end{align*}
\]

Available expressions: \([A+B, \ T1], \ [T1+T2, \ C], \ [T1+C, \ T4], \ [T3+T2, \ D]\)

Optimized code

\[
\begin{align*}
T1 &= A + B \\
T2 &= T1 + C \\
T3 &= T1 \\
C &= T1 + T2 \\
T4 &= T1 + C \\
D &= T3 + T2
\end{align*}
\]
what about $A = A + B$?
what about $A = A + B$?

- no available expression!
missed opportunity?

Three address code

T1 = A + B
T2 = T1 + C
T3 = A + B
C = T1 + T2
T4 = T1 + C
D = T3 + T2

Available expressions: [A+B, T1], [T1+T2, C], [T1+C, T4], [T3+T2, D]

Optimized code

T1 = A + B
T2 = T1 + C
T3 = T1
C = T1 + T2
T4 = T1 + C
D = C

Need an optimization called Global Value Numbering (GVN)
next: the trouble of aliasing