
Common Subexpression 
Elimination



what is CSE?
• Goal: remove redundant computation, don’t calculate the same expression multiple 

times

• Difficulty: how do we know when the same expression will produce the same result?

• This becomes harder with pointers (how do we know when B is killed?)

1: A = B * C
2: E = B * C

Keep the result of statement 1 in a 
temporary and reuse for statement 2

Expression is no longer redundant,
because computing it again will give a
different result

1: A = B * C
2: B = <new value>
3: E = B * C



key idea

• Idea: keep track of which expressions are “available” during execution of the program
• An expression is available if:
• I am guaranteed to have computed it before (it is redundant)
• If I recomputed the expression now, it will give the same result
• Issue: determining when an expression becomes available
• This happens whenever an expression is computed
• Issue: determining when an expression is no longer available
• This happens when one of its components is assigned to, or “killed.”



why is CSE effective?
• Lots of redundancy in real code!

• Operations may not look redundant at the source code level, but result in
redundancy at the 3AC level:

A[i] = A[i] + 1

T1 = &A
T2 = 4 * i
T3 = T1 + T2
T4 = *T3
T5 = &A
T6 = 4 * i
T7 = T5 + T6
T8 = T4 + 1
*T7 = T8



two varieties
• Local: within a single basic block

• Easier problem to solve

• Global: within a single procedure or across the whole program

• Intra- vs. inter-procedural

• More powerful, but harder

• Will come back to these sorts of “global” optimizations later



Maintaining available expressions
• For each 3AC operation in a basic block

• Create name for expression (based on lexical representation)

• If name not in available expression set, generate code, add it to set

• Track register that holds result of and any variables used to 
compute expression

• If name in available expression set, generate move instruction

• If operation assigns to a variable, kill all dependent expressions


