
Local Optimization



converting 3ac into assembly
• Simple approach: macro expansion
• Treat each 3AC instruction separately, generate code in isolation

ADD C, A, B

LA r1 <addr of A>
LW r2, 0(r1)
LA r3 <addr of B>
LW r4, 0(r3)
ADD r5, r2, r4
LA r6 <addr of C>
SW r5, 0(r6)



converting 3ac into assembly
• Simple approach: macro expansion
• Treat each 3AC instruction separately, generate code in isolation
• Problem: inefficient!
• Too many registers
• Redundant loads, adds

ADD C, A, B
ADD D, A, B

LA r1 <addr of A>
LW r2, 0(r1)
LA r3 <addr of B>
LW r4, 0(r3)
ADD r5, r2, r4
LA r6 <addr of C>
SW r5, 0(r6)

LA r7 <addr of A>
LW r8, 0(r7)
LA r9 <addr of B>
LW r10, 0(r9)
ADD r11, r8, r10
LA r12 <addr of D>
SW r11, 0(r12)



converting 3ac into assembly
• Simple approach: macro expansion
• Treat each 3AC instruction separately, generate code in isolation
• Problem: inefficient!
• Too many registers
• Redundant loads, adds

ADD C, A, B
ADD D, A, B

LA r1 <addr of A>
LW r2, 0(r1)
LA r3 <addr of B>
LW r4, 0(r3)
ADD r5, r2, r4
LA r6 <addr of C>
SW r5, 0(r6)

LA r7 <addr of A>
LW r8, 0(r7)
LA r9 <addr of B>
LW r10, 0(r9)
ADD r11, r8, r10
LA r12 <addr of D>
SW r5, 0(r12)



converting 3ac into assembly
• Simple approach: macro expansion
• Treat each 3AC instruction separately, generate code in isolation
• Problem: inefficient!
• Too many registers
• Redundant loads, adds

ADD C, A, B
ADD D, A, B
MOV D, C

LA r1 <addr of A>
LW r2, 0(r1)
LA r3 <addr of B>
LW r4, 0(r3)
ADD r5, r2, r4
LA r6 <addr of C>
SW r5, 0(r6)

LA r7 <addr of A>
LW r8, 0(r7)
LA r9 <addr of B>
LW r10, 0(r9)
ADD r11, r8, r10
LA r12 <addr of D>
SW r5, 0(r12)



one perspective on optimization

• Almost all compiler transformations fall into one of two categories:
• Optimizing computation: simplifying computations, removing unnecessary or 

redundant computations
• Scheduling computation: changing the order of when computations occur to 

improve code behavior

• These types of optimization can interact with each other: optimizing computations can 
change the impact of scheduling decisions, and scheduling decisions can enhance (or 
inhibit) opportunities for simplifying code



optimizating computations

• Optimize translation of 3AC to assembly to improve generated code
• Eliminate redundant computation: common subexpression elimination
• Eliminate unused code: dead code elimination
• Optimize use of registers, eliminate unneeded loads/stores: register allocation


