
Peephole Optimization

optimizing assembly

When generating code, can often create sequences of instructions that can be
obviously optimized:
• Store followed by a load:

 is the same as:

 saving a load

SW T1, 4(FP)
LW T2, 4(FP)

SW T1, 4(FP)
MV T2, T1

optimizing assembly

When generating code, can often create sequences of instructions that can be
obviously optimized:
• Address computation followed by a load:

 is the same as:

 saving an add

ADDI T1, FP, 8
LW T2, 0(T1)

LW T2 8(FP)

optimizing assembly

When generating code, can often create sequences of instructions that can be
obviously optimized:
• Multiply by 8:

 is the same as shifting by 3:

 replacing an expensive multiply with a cheap shift

MULI T2, T1, 8

SLL T2, T1, 3

peephole optimization

• Optimizations that match patterns in assembly
• Intuitively, look through a “peephole” at small sequences of instructions
• If pattern matches, apply optimization
• Lots of patterns: LLVM’s InstCombine pass has over 1000 optimizations!
• Can work at the assembly level (based on specific machine instructions) or at the

3AC level (simplifications based on mathematical equivalence)
• Effectiveness is closely tied to what assembly instructions are available, and how

expensive they are
• Question: why might peephole optimizations be more or less effective for

different machines?

more examples

• Constant folding

• Instruction selection

• Null sequences

MOV Rx, LIT1 + LIT2ADD Rx, LIT1, LIT2

ADDI Rz, Ry, LIT1MOV Rx, LIT1
ADD Rz, Ry, Rx

MOV Rx, RyADDI Rx, Ry, 0

more examples
• Branch swapping

• Instruction selection

BNE Rx, Ry, L2
BEQ Rx, Ry, L1
JMP L2
L1: ...

NEG Ry, RxSUB Ry, zero, Rx

Superoptimization
• Peephole optimization/instruction selection writ large

• Given a sequence of instructions, find a different sequence of instructions
that performs the same computation in less time

• Huge body of research, pulling in ideas from all across computer science

• Theorem proving

• Machine learning

• Program Synthesis

next: local optimization

