
Intermediate Representation

why an intermediate representation?

• Want to represent code in a form
that is:
• Closer to assembly than ASTs

— low level operations,
branches, memory operations
• Not machine specific — no

registers, instructions more
“abstract” than machine
instructions

• Makes it easier to perform certain
kinds of optimizations

LA T1 <address of x>
LI T2, 10
SW T2, 0(T1)
LW T3, 0(T1)
ADDI T4, T3, 20
SW T4, 0(T1)

MV 10, $GX //X = 10
ADD $GX, 20, $GX //X = 20 + X

becomes

three-address code

• All operations take at most three operands: two source operands, one destination
operand
• Almost the same as Risc-V assembly, except:
• No registers, only temporaries
• Operands can be literals, temporaries, or variables
• Loads and stores are implicit
• Encode address information in operand names for easy translation later
• Temporaries: $Tx
• Globals: $G<name>
• Locals: $L<stack offset>

converting 3ac into assembly

• Simple approach: macro expansion
• Treat each 3AC instruction separately,

generate code in isolation

ADD $GC, $GA, $GB

LA r1 <addr of A>
LW r2, 0(r1)
LA r3 <addr of B>
LW r4, 0(r3)
ADD r5, r3, r4
LA r6 <addr of C>
SW r5, 0(r6)

instruction selection

• Can be clever about how we turn 3AC into assembly by selecting appropriate
assembly instructions

• If one source operand is a literal, generate an immediate instruction

• If source operand is a local variable, generate a load with an offset, rather than
an address computation and a load

converting 3ac into assembly

• Generating better code:

ADD $GC, $LP4, $LL8

LW r1, 4(fp) //paramter at +4
LW r2, -8(fp) //local at -8
ADD r3, r1, r2
LA r4 <addr of C> //global C
SW r3, 0(r4)

next: simple optimizations

