Finding Dead Code



how do we find dead code?

* Easy answer: if the variable being written by an instruction is not live, the code is
dead

* Intuition: the value you are generating is not being used anywhere else, so
generating this value is pointless

1: A=B+ C
2. C=A+8B
3: T1 = A + B
4: D =T1 + C
5: T2 =D + T1
O: D=A+ B
/: WRITE(D)
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can we do this faster?

Recomputing and iterating is slow!

We can speed this up by computing use-def chains

* Track how uses of variables are connected to definitions of those variables
Can trace backwards from live code along use-def chains

® Instruction is “‘backwards reachable” from live code — instruction is live

* |nstruction is not backwards reachable — no definition from this instruction
eventually propagates to live code, instruction is dead

This generalizes to a program analysis technique called program slicing



next: register allocation



