Finding Dead Code

how do we find dead code?

* Easy answer: if the variable being written by an instruction is not live, the code is
dead

* Intuition: the value you are generating is not being used anywhere else, so
generating this value is pointless

1: A=B+ C
2. C=A+8B
3: T1 = A + B
4: D =T1 + C
5: T2 =D + T1
O: D=A+ B
/: WRITE(D)

how do we find dead code?

* Easy answer: if the variable being written by an instruction is not live, the code is
dead

* Intuition: the value you are generating is not being used anywhere else, so
generating this value is pointless

1: A =B+ C

2: C=A+8B %ﬁ,E}C}

3: T1 =A + B >

4: D=T1+cCc A B (Tl
s: T2=D+7T1 U8, D, T
o: D=A+B %’3}18}

7: WRITE(D)

how do we find dead code?

* Easy answer: if the variable being written by an instruction is not live, the code is
dead

* Intuition: the value you are generating is not being used anywhere else, so
generating this value is pointless

1: A=Ba4+C

/ C=A+8B %ﬁ,E}C}

3 T1 = A + B »

4: D=T1+C 1A B, C, Ti}
5. T2-D+7T1 1A B,D, Tl§
o D=A+8B

7. WRITE(D) 1D}

how do we find dead code?

* Easy answer: if the variable being written by an instruction is not live, the code is
dead

* Intuition: the value you are generating is not being used anywhere else, so
generating this value is pointless

1: A B + C

2 C=A+8B %ﬁ,g}C}

3: T1=A+B > 7

4: D=T1+cCc A B (Tl
1A, B, D, T1}

o: D=A+8B

7. WRITE(D) 1D}

how do we find dead code?

* After you remove dead code, it changes liveness information

* Recompute and iterate

1: A =B + (C

2 C=A+8B %ﬁ,g}C}

3: T1 = A + B >)

4: D=T1+cCc A B, (Tl
1A, B}

o: D=A+8B

7. WRITE(D) 1D}

how do we find dead code?

* After you remove dead code, it changes liveness information

* Recompute and iterate

1: A=B + C

2 C=A+8B %ﬁ,g}C}

3: T1 = A + B >)

4 - D=T1 +C '{A: B: C: Tl}
1A, B}

o: D =A + B

7. WRITE(D) 1D}

how do we find dead code?

* After you remove dead code, it changes liveness information

* Recompute and iterate

1: A=B + C

2: C=A+B %’2’5%
3: T1 = A + B A, Bl
o: D =A + B

7. WRITE(D) 1D}

i}

how do we find dead code?

* After you remove dead code, it changes liveness information

* Recompute and iterate

1: A =B C

20 c-avs B
3 TL=A+B 0 O
o: D =A + B

7. WRITE(D) 1D}

how do we find dead code?

* After you remove dead code, it changes liveness information

* Recompute and iterate

A, B}

O: D =A<+ B

7. WRITE(D) %5}

can we do this faster?

Recomputing and iterating is slow!

We can speed this up by computing use-def chains

* Track how uses of variables are connected to definitions of those variables
Can trace backwards from live code along use-def chains

® Instruction is “‘backwards reachable” from live code — instruction is live

* |nstruction is not backwards reachable — no definition from this instruction
eventually propagates to live code, instruction is dead

This generalizes to a program analysis technique called program slicing

next: register allocation

