
Finding Dead Code

• Easy answer: if the variable being written by an instruction is not live, the code is
dead

• Intuition: the value you are generating is not being used anywhere else, so
generating this value is pointless

how do we find dead code?

1: A = B + C
2: C = A + B
3: T1 = A + B
4: D = T1 + C
5: T2 = D + T1
6: D = A + B
7: WRITE(D)

• Easy answer: if the variable being written by an instruction is not live, the code is
dead

• Intuition: the value you are generating is not being used anywhere else, so
generating this value is pointless

how do we find dead code?

1: A = B + C
2: C = A + B
3: T1 = A + B
4: D = T1 + C
5: T2 = D + T1
6: D = A + B
7: WRITE(D)

{A, B}
{A, B, C}
{A, B, C, T1}
{A, B, D, T1}
{A, B}
{D}
{}

• Easy answer: if the variable being written by an instruction is not live, the code is
dead

• Intuition: the value you are generating is not being used anywhere else, so
generating this value is pointless

how do we find dead code?

1: A = B + C
2: C = A + B
3: T1 = A + B
4: D = T1 + C
5: T2 = D + T1
6: D = A + B
7: WRITE(D)

{A, B}
{A, B, C}
{A, B, C, T1}
{A, B, D, T1}
{A, B}
{D}
{}

• Easy answer: if the variable being written by an instruction is not live, the code is
dead

• Intuition: the value you are generating is not being used anywhere else, so
generating this value is pointless

how do we find dead code?

1: A = B + C
2: C = A + B
3: T1 = A + B
4: D = T1 + C
5: T2 = D + T1
6: D = A + B
7: WRITE(D)

{A, B}
{A, B, C}
{A, B, C, T1}
{A, B, D, T1}
{A, B}
{D}
{}

• After you remove dead code, it changes liveness information

• Recompute and iterate

how do we find dead code?

1: A = B + C
2: C = A + B
3: T1 = A + B
4: D = T1 + C

6: D = A + B
7: WRITE(D)

{A, B}
{A, B, C}
{A, B, C, T1}
{A, B}

{D}
{}

• After you remove dead code, it changes liveness information

• Recompute and iterate

how do we find dead code?

1: A = B + C
2: C = A + B
3: T1 = A + B
4: D = T1 + C

6: D = A + B
7: WRITE(D)

{A, B}
{A, B, C}
{A, B, C, T1}
{A, B}

{D}
{}

• After you remove dead code, it changes liveness information

• Recompute and iterate

how do we find dead code?

1: A = B + C
2: C = A + B
3: T1 = A + B

6: D = A + B
7: WRITE(D)

{A, B}
{A, B}
{A, B}

{D}
{}

• After you remove dead code, it changes liveness information

• Recompute and iterate

how do we find dead code?

1: A = B + C
2: C = A + B
3: T1 = A + B

6: D = A + B
7: WRITE(D)

{A, B}
{A, B}
{A, B}

{D}
{}

• After you remove dead code, it changes liveness information

• Recompute and iterate

how do we find dead code?

1: A = B + C

6: D = A + B
7: WRITE(D)

{A, B}

{D}
{}

can we do this faster?
• Recomputing and iterating is slow!

• We can speed this up by computing use-def chains

• Track how uses of variables are connected to definitions of those variables

• Can trace backwards from live code along use-def chains

• Instruction is “backwards reachable” from live code → instruction is live

• Instruction is not backwards reachable → no definition from this instruction
eventually propagates to live code, instruction is dead

• This generalizes to a program analysis technique called program slicing

next: register allocation

