
Optimization Overview



inefficient code

• You may have noticed that the code 
you are generating in your project 
seems very inefficient

• Lots of redundant computation

LA T1 <address of x>
LW T2 0(T1)
LA T3 <address of x>
LW T4 0(T3)
ADD T5 T2 T4

LA T1 <address of x>
LW T2 0(T1)
LW T4 0(T1)
ADD T5 T2 T4

instead of



LA T1 <address of x>
LW T2 0(T1)
LW T4 0(T1)
ADD T5 T2 T2

inefficient code

• You may have noticed that the code 
you are generating in your project 
seems very inefficient

• Lots of redundant computation

LA T1 <address of x>
LW T2 0(T1)
LA T3 <address of x>
LW T4 0(T3)
ADD T5 T2 T4

instead of



inefficient code

• You may have noticed that the code 
you are generating in your project 
seems very inefficient

• Lots of instruction choice

LI T1 10
LW T2 8(FP)
ADD T3 T1 T2
SW T3 -4(FP)

LW T2 8(FP)
ADDI T3 T2 10
SW T3 -4(FP)

instead of



inefficient code

• You may have noticed that the code 
you are generating in your project 
seems very inefficient

• Lots of unnecessary loads and 
stores

LA T1 <address of x>
LI T2, 10
SW T2, 0(T1)
LW T3, 0(T1)
ADDI T4, T3, 20
SW T4, 0(T1)

LA T1 <address of x>
LI T2, 10
ADDI T4, T2, 20
SW T4, 0(T1)

instead of



inefficient code

But code inefficiency goes beyond just small sequences of instructions

• What about redundant computation happening inside a loop?

• What about expensive operations happening inside a loop?

• What about code that access memory in a way that is bad for caching?



optimization

• Compilers can generate correct code relatively easily
• But generating efficient code is much harder
• This is where a lot of programming languages research happens

• Can happen at multiple levels
• At the source code level or AST level (e.g., restructure loops for better

performance)
• At the assembly level (e.g., replace some sequences of instructions with more

efficient sequences)
• At the intermediate representation level (e.g., remove redundant

instructions)



intermediate representation

• We have already worked with one intermediate representation: abstract syntax
trees
• Many compilers have another, lower-level intermediate representation that

facilitates optimization
• Closer to assembly, but no machine specific instructions, registers, etc.
• Examples: LLVM bitcode, C# CIL, Java bytecode


