
Implementing Type Checking



walk the AST
• For each syntactic structure that can 

have a type, add a type field to the AST
• Perform a post-order walk of the AST 

to assign types to each node in the AST

• Base cases:
• Variables: get types from symbol table
• Literals: get types from node type

Is:
x = (a + b) + c
well typed?

Is:
x

well typed?

Is:
a + b

well typed?

Is:
c

well typed?

Is:
a

well typed?

Is:
b

well typed?

int int

int int int



walk the AST
• For each syntactic structure that can 

have a type, add a type field to the AST
• Perform a post-order walk of the AST 

to assign types to each node in the AST

• Inductive cases:
• Expressions: compare types of

component sub-expressions
• Assignment: compare LHS and RHS

Is:
x = (a + b) + c
well typed?

Is:
x

well typed?

Is:
a + b

well typed?

Is:
c

well typed?

Is:
a

well typed?

Is:
b

well typed?

int int

int int int



walk the AST
• For each syntactic structure that can 

have a type, add a type field to the AST
• Perform a post-order walk of the AST 

to assign types to each node in the AST

• Inductive cases:
• Expressions: compare types of

component sub-expressions
• Assignment: compare LHS and RHS
• Conditionals: compare LHS and RHS

Is:
(x < y)

well typed?

Is:
x

well typed?

Is:
y

well typed?

int int



walk the AST
• For each syntactic structure that can 

have a type, add a type field to the AST
• Perform a post-order walk of the AST 

to assign types to each node in the AST

• Inductive cases:
• Function calls: compare types of sub-

expressions to argument types in 
symbol table
• Note: type assigned to function call

should be the return type of the 
function!

Is:
x = foo(a, b)
well typed?

Is:
x

well typed?

Is:
foo(a,b)

well typed?

int int

Is:
a

well typed?

Is:
b

well typed?

int int



walk the AST
• For each syntactic structure that can 

have a type, add a type field to the AST
• Perform a post-order walk of the AST 

to assign types to each node in the AST

• Inductive cases:
• Function calls: compare types of sub-

expressions to argument types in 
symbol table
• Return statements: compare return

expression type to return type of
function in symbol table

Is:
return (x + y)
well typed?

Is:
foo

well typed?

Is:
x + y

well typed?

intint x int -> int

Is:
x

well typed?

Is:
y

well typed?

int int



walk the AST
• For each syntactic structure that can 

have a type, add a type field to the AST
• Perform a post-order walk of the AST 

to assign types to each node in the AST

• If any node cannot be typed, return an
error!

Is:
return (x + y)
well typed?

Is:
foo

well typed?

Is:
x + y

well typed?

intint x int -> int

Is:
x

well typed?

Is:
y

well typed?

int int



next: optimization


