Static Type Checking
what is static type checking

• Static type checking is the process of ensuring that a program is well-typed

• Central idea: types constrain the behavior of a program
 • A well-typed program is one whose run-time behavior stays within that set of constraints

• Example: an expression that is well-typed and has type `int` will, at runtime, produce a value that is an `int`
syntactic type checking

• Static type checking is based on the syntax of the expressions being typed as well as the context in which the type checking happens.

• Is $x = y + z$ well-typed?

• The statement forms a context: are x, y, and z all the same type, and types that can have arithmetic operations performed on them?
syntactic type checking

• Being **well-typed** is an inductive property
• Basic idea: assign a type to every expression
 • If you can assign a type to an expression, it is well-typed
• Type check expressions and statements by breaking them down into smaller components
 • Find the types of smaller expressions
 • Combine types of smaller expressions to assign a type to the larger expression
syntactic type checking

- **Being well-typed** is an inductive property
- Basic idea: assign a type to every expression
 - If you can assign a type to an expression, it is well-typed
- Type check expressions and statements by breaking them down into smaller components
 - Find the types of smaller expressions
 - Combine types of smaller expressions to assign a type to the larger expression

Is: \(x = (a + b) + c \) well typed? ✗

<table>
<thead>
<tr>
<th>Is: (x) well typed?</th>
<th>Is: (a + b) well typed?</th>
<th>Is: (c) well typed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>int</td>
<td>int</td>
</tr>
</tbody>
</table>

Is: \(a \) well typed? | Is: \(b \) well typed? |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>int</td>
</tr>
</tbody>
</table>
For each syntactic form in your language:
- Expressions
- Statements

Describe the rules under which the form is well typed based on the types of its sub-components

Structure captured by AST!