
Static Types

static types

• Some languages have static types
• Types of key program elements — variables, functions — are known at

compile time, before the program runs
• Could be expressed directly in the program (int x)
• Could be inferred from other parts of the program (x = 7 + 2)

• Contrast with dynamically typed languages that don’t express types in the
program
• Types of program elements are not determined until runtime
• Python, Perl, LISP
• Not the same as the language not having types!

type checking
• Static types give compilers the power to

do static type checking
• Use type information to catch and

prevent bugs
• Intuition: prove at compile time that

certain errors cannot occur at run time

• Think of this as a generalization, or more
powerful version, of what we already do
in our compiler

type checking

• Parsing identifies when a program is
syntactically correct

• But syntactically correct programs can
still have problems!

All text files

Syntactically correct
programs

type checking
• Parsing identifies when a program is

syntactically correct

• But syntactically correct programs can
still have problems!

• A correctly-typed program obeys
additional rules:
• e.g., all arithmetic expressions use

compatible types
• e.g., all functions are called with the

correct type of arguments

All text files

Syntactically correct
programs

Correctly-
typed

programs

correctly typed ≠ correct

• Saying a program is correctly typed is
saying something specific:
• Certain run-time errors cannot happen

int main() {
 foo(‘a’);
}

void foo(int * p) {
 print(* p);
}

correctly typed ≠ correct

• Saying a program is correctly typed is
saying something specific:
• Certain run-time errors cannot happen

• Does not mean a program is correct!
• Other run-time errors can still happen
• Other bugs can still happen

• Could be caught by dynamic type checks
• e.g., Java catches null de-references

int main() {
 int * x = null;
 foo(x);
}

void foo(int * p) {
 print(* p);
}

correctly typed ≠ correct
• Saying a program is correctly typed is

saying something specific:
• Certain run-time errors cannot happen

• A program that is not correctly typed
may still be “safe”
• If the compiler allowed it to run, it

would not have a runtime error

• An equivalent Python program would not
have an error

int main() {
 int a = 2;
 foo(‘x’, a);
}
void foo(int * p, int b) {
 if (b != 2)
 print(* p);
}

correctly typed ≠ correct
• Saying a program is correctly typed is

saying something specific:
• Certain run-time errors cannot happen

• A program that is not correctly typed
may still be “safe”
• If the compiler allowed it to run, it

would not have a runtime error

All text files

Correctly-
typed

programs

Programs with
no runtime

errors

correctly typed ≠ correct

• Saying a program is correctly typed is
saying something specific:
• Certain run-time errors cannot happen

• So why do this?
• The set of run-time errors ruled out

by a correctly typed program may be
large and important!

All text files

Correctly-
typed

programs

Programs with
no runtime

errors

example tradeoffs

• Different languages make different tradeoffs between static typing, dynamic
typing, and no checks

• C/C++
• Static typing ensures arithmetic operations are compatible, function calls are

compatible
• No (or very few) runtime checks for things like array out of bound, null

dereferences
• Java
• Static typing ensures arithmetic operations are compatible, function calls are

compatible
• Runtime checks ensure that array accesses are in bounds, pointers are not null

power of static types

• Static types say: certain run time errors cannot occur

• How do you decide?
• Static types make stronger guarantees → fewer runtime errors can

occur
• But static type systems cannot guarantee everything!
• Guarantee that a program terminates → not possible!

what else are static types good for?

• Help programmers structure code
• Types provide a form of documentation
• Help IDEs work better
• Types give IDEs more information about a program for tools like code

completion
• Prove very strong properties about programs
• The “set of values” that a type constrains can be very limiting indeed!
• e.g., the range of an integer value (e.g. [0, 100] can be a type)
• (Some times can even use undecidable type systems for things like

theorem proving)

