
Dynamic Type Checking

what happens?

.section .text
LA t1, 0x20000000
LI t2, 17 ;t2 = 17
SW t2, 0(t1) ;*t1 = t2
FLW f1, 0(t1) ;f1 = *t1

In a “real” machine:

t2 = 0000 0000 0000 0000 0000 0001 0001 (17 in binary)

so

f1 = 0000 0000 0000 0000 0000 0001 0001 (2.38e-44 in floating point)

what happens?

.section .text
LA t1, 0x20000000
LI t2, 17 ;t2 = 17
SW t2, 0(t1) ;*t1 = t2
FLW f1, 0(t1) ;f1 = *t1

On our simulator:

AssertionError: Value in memory not of type <class 'float'>

what happens?

Our simulator does some basic dynamic type checking

• Keeps track of the type of data stored in memory
• Makes sure that loads and stores respect that type

• Cannot load an integer value into a floating point register, and vice versa

what is dynamic type checking?
• Types constrain behavior of a program

• If those constraints are not respected, a program can produce weird behavior

• Or worse, have a security vulnerability!

• Dynamic type checking checks those constraints at runtime to turn constraint
violations into runtime errors

• Which constraints are checked, and where, is up to the language/runtime

dynamic checks in python

• Makes sure that operations only work on valid types

10 + “x” → TypeError: unsupported operand type(s) for +: 'int' and ‘str’

• Makes sure that list accesses are valid

x = 5 * [0] ; x[6] → IndexError: list index out of range

• Doesn’t check that functions are called with the right types (why?)

how does dynamic type checking work?

• Data carries along meta-data that specifies type information

• Data type, lengths of strings, sizes of arrays, whether a reference is null, etc.

• At run-time this meta-data is used to check constraints before performing
operations that might give bad behavior if constraints are violated

• Not all constraints are checked all the time!

what to check?
• Different languages make different choices about what to check

• Java will check that array access are in bounds, C will not

• C++ will (sort of) check that downcasts succeed, Java will give a better
runtime error

• What happens if a constraint is not checked?

• Can cause an error lower in the system stack, e.g., a segmentation fault

• Can cause silent problems (lots of security vulnerabilities!)

when to check?

• Dynamic type checking requires run-time processing

• Adds overhead!

• Array accesses in Java are much slower than array accesses in C

• In some circumstances, can offload some of the work of type checking to
the compiler, check before the program even runs

• This is called static type checking!

