
What are Types?



data types

• A data type constrains the set of valid values a piece of data can take on
• An int in C can take on values from [-231, 231 - 1]
• A char in C can take on values from [0, 255]
• Not always easy to define this set (what are the sets of valid values for floats?)
• Some times we express this information explicitly:

int c = 0

• Other times, it’s implicit:
x = “Hello from Python”



data types

• Constraining the set of values helps determine many other things
• How much space it takes up (ints take up 4 bytes, chars take up 1 byte)
• How to interpret a sequence of bits: 01000001
• If the data is an int, this is 65
• If the data is a char, this is ‘A’

• What kinds of operations you can do on it
• Can add together two ints
• Cannot add together two bools



more types

• Pieces of data are not the only things that can have types
• Functions can have types too!

int foo(int i, char c)

 has type (int x char) → int

• Constrains behavior just like data types do:
• When I call foo, I need to pass it an int and a char
• When I use the return value of foo, I should treat it as an int



even more types

• Arrays:
int a[10] : means that an array has exactly 10 items of type int

• Pointers:
float * * p : means a pointer that points to another pointer that points to a float

• Structs:
struct {int x; float f;} s : means a piece of data that contains an int and a float



what can go wrong?

• What can go wrong if we do not pay attention to types?
• What happens if we generate code to add an int to a float?

• What happens if we pass the wrong kind of data to a function?
• What happens if we access past the end of an array?

• What happens if we use the wrong kind of load to access the first field of a struct?

• In our simulator, many of these operations will trigger a runtime failure (try it!)
• The simulator does dynamic type checking under the hood, but in reality, in many

cases you will just get very strange behavior in your program



types as constraints

• Think of types as imposing constraints on the behavior of your program
• Operations only between matching types
• Functions called with appropriate arguments [is the previous point just a

special case of this point?]

• Different programming languages, compilers, and runtime systems do different
things to enforce these constraints
• Not all constraints are always enforced!



next: dynamic type checking


