
What happens if foo and bar reuse 
registers?



two functions

• Ignoring machinery for stack/return address/frame management

• What’s wrong with this code?

foo:
LI t0, 10
ADDI t1, t0, 7
...
JR bar
...
ADDI t2, t1, 10

bar:
...
LI t1, 20
...
RET



saving registers

• To avoid overwriting registers, it is important to save all registers that the 
caller is using and the callee will overwrite
• Careful about “using”: a caller needs a register if the value it has before 

the callee is invoked is used after the callee is returned
• More precisely, the register is live across the function call (we will 

define this more carefully in a later lecture)
• Save registers onto the stack when making a call
• Restore registers from the stack when returning from a call



Problem

• Do not know the caller/callee relationship!

• Caller may not know all possible functions callee invokes → cannot tell 
exactly which registers will be overwritten

• Callee may not know who calls it → cannot tell exactly which registers 
are in use



callee saves vs. caller saves
• Can be conservative and save extra registers
• Callee can save all registers it overwrites even if the caller doesn’t use them: 

callee saves
• Caller can save all registers it uses, even if callee does not overwrite them: 

caller saves
• Who saves the registers determines which activation record holds the registers
• Callee saves: put saved registers on stack before allocating space for locals, 

restore them on return
• Caller saves: put saved registers on stack before allocating space for arguments 

and return values, restore them on return
• Question: why not put saved registers on stack after arguments and return 

values?



ABI

• Determining what register saving convention to use is part of a system’s
application binary interface
• All software written for an architecture/OS should use the same convention
• What happens if not?
• Can use some combination of caller saves and callee saves
• Risc-V dictates that some registers are the caller’s responsibility to save, and

some registers are the callee’s responsibility to save

• In project, we will always use callee saves: save all registers written by the callee
• One exception: RA gets overwritten by JR, so caller must save it


