Stack organization



how to lay out the program stack

* The stack is the primary memory area for managing the interaction between functions
* Arguments passed from caller to callee (though this may happen in registers as an
optimization)
* Return values passed from callee to caller (though this may happen in registers as an
optimization)
* Local variables for each function

* Saved registers for each function (caller saves registers callee might use, and callee
saves registers caller might need)

* “Spilled” registers



key mechanisms for program stack

* Reserved area of memory
* Different area than program text, globals, heap

* In Risc-V, stack grows down: pushing an element onto the stack puts it at a lower address
than the current top of the stack

* Two pointers
* Stack pointer (sp): points to the top of the stack
* In our approach, sp will point to the next open spot on the stack
® Pushing on the stack: store to sp, decrement sp by appropriate amount
* Frame pointer (fp): points to the base of the activation record
® Locations of other parts of the stack are relative to fp

* Optimization: can eliminate fp, but makes code generation more complicated (how? why?)



What does an activation record look like for a
function?

Caller places arguments and return value on
stack

Caller places its return address (where it should
return to) on stack

* Why? Register holding this address will be
overwritten when invoking callee

Callee saves old frame pointer on stack, then

moves frame pointer to point to the base of its
record

Callee creates space for its local variables on
stack

Activation record

argument(s)

return value

caller’s return address

caller’s frame pointer

local variables of callee




