
Stack organization



how to lay out the program stack

• The stack is the primary memory area for managing the interaction between functions
• Arguments passed from caller to callee (though this may happen in registers as an 

optimization)
• Return values passed from callee to caller (though this may happen in registers as an 

optimization)
• Local variables for each function
• Saved registers for each function (caller saves registers callee might use, and callee 

saves registers caller might need)
• “Spilled” registers



key mechanisms for program stack

• Reserved area of memory

• Different area than program text, globals, heap

• In Risc-V, stack grows down: pushing an element onto the stack puts it at a lower address
than the current top of the stack

• Two pointers
• Stack pointer (sp): points to the top of the stack

• In our approach, sp will point to the next open spot on the stack

• Pushing on the stack: store to sp, decrement sp by appropriate amount
• Frame pointer (fp): points to the base of the activation record

• Locations of other parts of the stack are relative to fp
• Optimization: can eliminate fp, but makes code generation more complicated (how? why?)



Activation record

• What does an activation record look like for a 
function?
• Caller places arguments and return value on 

stack
• Caller places its return address (where it should

return to) on stack
• Why? Register holding this address will be 

overwritten when invoking callee
• Callee saves old frame pointer on stack, then 

moves frame pointer to point to the base of its 
record
• Callee creates space for its local variables on 

stack

argument(s)

return value

caller’s return address

caller’s frame pointer

local variables of callee

fp

sp


