
Symbols for Functions

why do functions need to be in symbol tables?

• Functions are symbols, so tracking them is important!
• Avoid name conflicts (different functions with the same name)
• This interacts in a funny way with function overloading
• Keep track of the arguments and return information about a function
• To make sure that functions are called properly
• This also interacts in a funny way with function overloading
• Keep track of the names of parameters to a function
• To make sure they are accessed correctly during code generation

functions are symbols and scopes

• Functions also have their own scope!
• Local variables in functions are in a different

scope than local variables in other functions
or global variables
• Variable names can be reused
• In global scope: need to track memory

address of variables
• In local scope: need to track stack offset of

variables
• Remember, local variables are stored on

the stack, accessed relative to stack/frame
pointers

void foo(int x, int y)
{
int a;
int b;
...

}

Name Type Location
x int reg: a1
y int fp: +8
a int fp: -4
b int fp: -8

symbol tables are trees
• Scopes are nested within one another
• Global scope
• Function scope nested within global scope
• Local blocks nested within functions (not in uC)

• Variables can be accessed if they are in scope: if they exist in
the current scope or any scope this scope is nested inside

• Store pointers from parent scopes to children
scopes (e.g., global scope has a child scope for each
function), and from children scope to parent scope

int foo(...) {
...

}
int bar(...) {
...

 for (...) {
 ...

}

Global

foo bar

for-loop

looking for symbols

• When you access a variable in code, you want
to check the current scope for the variable, as
well as all parent scopes
• Bind the variable to the entry in the “closest” scope

• When generating code for that variable,
generate address based on entry
• Global scope: absolute address
• Local scope: address offset from frame

pointer

int foo(...) {
...

}
int bar(...) {
...

 for (...) {
 ...

}

Global

foo bar

for-loop

dealing with overloading
• Some language support function overloading
• Multiple functions with the same name, but different numbers/types of

arguments
• How do we deal with repeated names for functions?
• Use name mangling: encode additional information into each function to

incorporate information about argument types
• Creates a different name for each distinct function

void foo(int x, float y)

becomes

void foo3_int_float(int x, float y) //why put “3” at the end of foo?

next: code generation for functions

