
Function Basics

Functions

• Functions are not strictly necessary for a
programming language to be complete (in the Turing
complete sense)
• But they are useful!
• And implementing some things without functions

may require basically rebuilding the machinery of
functions anyway

• What makes functions useful?
• Encapsulation of code — reuse functionality
• Encapsulation of state — local variables
• Recursion

int main() {
 return p(2) + p(3) + fact(3);
}

int p(int x) {
 return x * x;
}

int fact(int x) {
 int (x == 0) return 1;
 return x * fact(x - 1);
}

Encapsulation of code

• Functions are subroutines
• Call a function: execute routine then return back

to where you called it from
• Need a function address to figure out where

the routine’s code is
• Need a return address to figure out where to

return to
• These are addresses of code, not data
• The function making the call is the caller; the

function being called is the callee

int foo() {
 int x;
 x = 2;
 print(bar(x));
 print(bar(x + 1));
 return 0;
}

int bar(int y) {
 int x;
 print(y);
 x = y * y;
 return x;
}

Encapsulation of code

• Functions can modify their behavior based on how
they are called
• Pass a different set of arguments to the function,

perform a different computation
• Need some way of binding the arguments to

a function to the parameters of a function
• Need some way of passing data between caller

and callee

int foo() {
 int x;
 x = 2;
 print(bar(x));
 print(bar(x + 1));
 return 0;
}

int bar(int y) {
 int x;
 print(y);
 x = y * y;
 return x;
}

Encapsulation of data

• Local variables in a function are not visible outside the
function
• Modification to local variables are not seen anywhere

else
• Local variables retain their value even after

calling a function and returning from it
• Need a place to store local variable on a per-function basis
• New local storage each time a function is called: a

frame or activation record
• Local storage persists until a function returns: a stack

int foo() {
 int x;
 x = 2;
 print(bar(x));
 print(bar(x + 1));
 return 0;
}

int bar(int y) {
 int x;
 print(y);
 x = y * y;
 return x;
}

Recursion

• Once you have the ability to call a function multiple
times, with different parameters each time, and local
storage, you can do recursion
• The basis of many models of computation

int fib(int x) {
 int s1;
 int s2;
 if (x < 2) {
 return 1;
 }
 s1 = fib(x - 1);
 s2 = fib(x - 2);
 return s1 + s2;
}

