
Switch Statements

Switch statements

switch (<expr>)
case <const_list>: <stmt_list>
case <const_list>: <stmt_list>
...
default: <stmt_list>
end

cond

cond_expr

Switch statements

• Generated code for <expr> then check all the
cases to see which matches the result

• Key issues:

• Where to jump?

• Multiple cases lead to the same code

• Many different cases --- potentially dozens or
hundreds

switch (<expr>)
case <const_list>: <stmt_list>
case <const_list>: <stmt_list>
...
default: <stmt_list>
end

jump tables

switch (<expr>)
case <const_list>: <stmt_list>
case <const_list>: <stmt_list>
...
default: <stmt_list>
end

• Problem: do not know which label to jump to
until switch expression is evaluated

• Use a jump table: an array indexed by case
values, contains address to jump to

• If table is not full (i.e., some possible values
are skipped), can point to a default clause

• If default clause does not exist, this can
point to error code

• Problems

• If table is sparse, wastes a lot of space

• If many choices, table will be very large

Jump table example

Consider the code:
((xxxx) is address of code)

Case x is
(0010) When 0: stmts
(0017) When 1: stmts
(0192) When 2: stmts
(0198) When 3 stmts;
(1000) When 5 stmts;
(1050) Else stmts;

Jump table has 6 entries:

0 JUMP 0010

1 JUMP 0017

2 JUMP 0192

3 JUMP 0198

4 JUMP 1050

5 JUMP 1000

Table only has one
Unnecessary row
(for choice 4)

0 JUMP 0010

1 JUMP 0017

2 JUMP 0192

3 JUMP 0198

4 JUMP 1050

. . . JUMP 1050

986 JUMP 1050

987 JUMP 1000

Jump table example

Consider the code:
((xxxx) Is address of code)

Case x is
(0010) When 0: stmts0
(0017) When 1: stmts1
(0192) When 2: stmts2
(0198) When 3 stmts3
(1000) When 987 stmts4
(1050) When others stmts5

Jump table has 988 entries:

Table has 983 unnecessary rows.
Doesn’t appear to be the right
thing to do! NOTE: table size is
proportional to range of choice
clauses, not number of clauses!

Do a binary search

Perform a binary search on
the table. If the entry is
found, then jump to that
offset. If the entry isn’t
found, jump to others clause.
O(log n) time, n is the size of
the table, for each jump.

0 JUMP 0010

1 JUMP 0017

2 JUMP 0192

3 JUMP 0198

987 JUMP 1000

Consider the code:
((xxxx) Is address of code)

Case x is
(0010) When 0: stmts0
(0017) When 1: stmts1
(0192) When 2: stmts2
(0198) When 3 stmts3
(1000) When 987 stmts4
(1050) When others stmts5

Jump table has 5 entries:

Linear search example

Consider the code:
((xxxx) Is address of code)

Case x is
(0010) When 0: stmts1
(0017) When 1: stmts2
(0192) When 2: stmts3
(1050) When others stmts4

If there are a small number of
choices, then do an in-line linear
search. A straightforward way to do
this is generate code analogous to an
IF THEN ELSE.

If (x == 0) then stmts1;
Elseif (x = 1) then stmts2;
Elseif (x = 2) then stmts3;
Else stmts4;

O(n) time, n is the size of the table, for each jump.

Dealing with jump tables

switch (<expr>)
case <const_list>: <stmt_list>
case <const_list>: <stmt_list>
...
default: <stmt_list>
end

<expr>
<code for jump table>
LABEL0:
<stmt_list>
LABEL1:
<stmt_list>
...
DEFAULT:
<stmt_list>
OUT:

• Generate labels, code, then build jump table

• Put jump table after generated code

• Why do we need the OUT label?

• In case of break statements

