
Generating Code for Control 
Structures



code generation

• Generating code for control structures works the same as generating code for 
statements and expressions: generate the code bottom-up

• Generate code for the sub-components before “gluing” the code together to 
create code for overall control structure

• Two key challenges:

• Generating labels for branch targets

• Generating code for conditionals



if statements

if (<cond_expr>) {
 <stmt_list_1>
} else {
 <stmt_list_2>
}

IfNode

BinaryOp StmtListNode StmtListNode



if statements

if (<cond_expr>) {
 <stmt_list_1>
} else {
 <stmt_list_2>
}

<cond_expr>
b<!op> l_else
<stmt_list_1>
j l_end
l_else:
<stmt_list_2>
l_end:



if statements—problem 1

<cond_expr>
b<!op> l_else
<stmt_list_1>
j l_end
l_else:
<stmt_list_2>
l_end:

• Labels need to be unique

• Code generator needs to keep track of what 
labels have been used (similar to keeping 
track of which virtual registers have been 
used)

• Tip: give labels human-readable names 
(lab_end, not lab_029) to make it easier to 
debug



if statements—problem 2

<cond_expr>
b<!op> l_else
<stmt_list_1>
j l_end
l_else:
<stmt_list_2>
l_end:

• branch type depends on comparison 
operation, branch target depends on labels

• Two possible solutions:

• Generate labels in code generator prefix 
(before stepping into conditional 
expression subtree) → be careful, because 
“valence” of branch can depend on how 
the conditional is used

• Patch up code block for conditional when 
stitching the code blocks together → be 
careful, because branch type depends on 
the comparison operator


