
Generating Code



what kind of code to generate?

• ASTs are not executable code

• Walk over AST to generate assembly instructions

• Compiler project: RiscV assembly

• Typically: generate assembly assuming unlimited (virtual) registers, make the 
code work with fewer registers later



from ASTs to code
• To generate code, we can perform a post-order walk of the AST

• Walk over AST, for each sub-tree, generate code for that subtree, combine 
code from multiple subtrees to generate code for larger tree:

CodeObject generate_code() {
 //pre-processing code
 CodeObject lcode = left.generate_code();
 CodeObject rcode = right.generate_code();
 return generate_self(lcode, rcode);
}



what is a codeobject?

• Keeps track of information for segments of code associated with an AST subtree

• List of instructions that correspond to the code for that subtree

• Register where result of expression is stored (if codeobject is for an 
expression)

• Whether code object holds code or other information (constant, variable 
name)

• Whether register stores an l-value or an r-value



l-values vs r-values

• L-values: addresses which can be stored to or loaded from

• R-values: data (often loaded from addresses)

• Expressions operate on R-values

• Assignment statements: L-value := R-value

• Consider the statement a := a + 1

• the a on LHS refers to the memory location referred to by a and we store to 
that location

• the a on RHS refers to data stored in memory location referred to by a so we 
will load from that location to produce the R-value



simple cases
• Generating code for constants/literals

• Simple option: store constant in register (using load immediate instruction)

• More complicated: defer generating code, pass constant up in codeobject with constant 
flag (lets you use other immediate instructions later)

• Generating code for identifiers

• Is this an address? Or data? Depends on whether it’s on the LHS or the RHS!

• If on LHS, need to keep it as memory location to store to

• If on RHS, need to load from it

• Simple solution:

• Pass identifier up to next level, wait until we see how it is used to generate code

• Mark it as an L-value (it’s not yet data!)



generating code for expressions
• Allocate a fresh virtual register for result of expression

• Examine codeobjects from subtrees

• If result registers are L-values, load data from them into new registers (need to 
operate on data, not addresses)

• Generate code to perform operation

• If code object flagged constant, can perform operation immediately

• No need to perform code generation!

• Store result in freshly-allocated virtual registers (temporaries)

• Is this an L-value or an R-value?

• Return code for entire expression



generating code for assignments
• Store value of temporary from RHS into address specified by temporary from LHS

• Why does this work?

• Because temporary for LHS holds an address

• If LHS is an identifier, we passed the identifier up itself as an L-value (get actual 
address from symbol table)

• If LHS is complex expression

int *p = &x

*(p + 1) = 7;

it still holds an address, even though the address was computed by an expression



next: example


