Abstract Syntax Irees



what is an abstract syntax tree

* Tree representing the structure of the
program

* Leaf nodes represent elements like @

variables and literals @ w

* Interior nodes represent higher-level

* Arithmetic operations and other

complex expressions (e.g., function » @

calls)
* Assignment statements
* Control statments

* |ists of statements



why abstract syntax trees!?

* Parse trees are tied to specific grammar used to recognize a language

* Lots of extraneous information we don’t need (semicolons, parentheses,
intermediate constructs)

* May be structured oddly to deal with parser constraints (capturing order of
operations, dealing with left-recursion)

* Abstract syntax trees are, well, abstract

* Tree nodes represent operations without necessarily being tied to specific
concrete syntax (can change keywords without changing AST structure)

* Only preserve information needed for correct analysis and code generation
(tree structure captures order of operations, rather than grammar structure)



ast vs parse tree

a+b*c
/ expr\
expr_prefix factor
expr_prefix factor add op factor_prefix postfix_expr
/ \ factor preflx postfix_expr mul_op pnr;nary
‘ l id
factor preflx postfix_expr A primary . ‘
‘ ‘ IDENTIFIER (c)
)\ primary id
id IDENTIFIER (b)

¢

IDENTIFIER (a)

VarRef
(a, INT]

AddExpr (+)

b, INT]

€
c

rReD
INT]




next: ASTs for expressions




