
Abstract Syntax Trees



what is an abstract syntax tree
• Tree representing the structure of the 

program

• Leaf nodes represent elements like 
variables and literals

• Interior nodes represent higher-level 
constructs:

• Arithmetic operations and other 
complex expressions (e.g., function 
calls)

• Assignment statements

• Control statments

• Lists of statements



why abstract syntax trees?

• Parse trees are tied to specific grammar used to recognize a language

• Lots of extraneous information we don’t need (semicolons, parentheses, 
intermediate constructs)

• May be structured oddly to deal with parser constraints (capturing order of 
operations, dealing with left-recursion)

• Abstract syntax trees are, well, abstract
• Tree nodes represent operations without necessarily being tied to specific 

concrete syntax (can change keywords without changing AST structure)

• Only preserve information needed for correct analysis and code generation 
(tree structure captures order of operations, rather than grammar structure)



ast vs parse tree
a + b * c 



next: ASTs for expressions


