
Symbol Tables

what is a symbol table?
• One of the most important things a compiler keeps

track of is the symbols in the program

• What names are used for variables, functions,
structs, classes, etc.

• One symbol table per scope
• A scope is a region of a program where certain

symbols are accessible (e.g., global, local to a function)

• Scopes can be nested

• Within a function, can access both local variables
and global variables

int x, y, z;
float z[20];
int * * p;
struct S {
 int x;
 float y;
};
struct S q;

what do we keep track of?
• What a symbol table keeps track of for each symbol depends on

the symbol and the scope

• Variables: name, type, size of variable (needed for allocating
space)

• If variable is global, may keep track of address, if local to a
function, keep track of where in the activation record it
is (where in a function’s stack frame)

• Arrays: name, type, size, number of elements

• Functions: name, return type, number and type of arguments

• Structs: name, types and sizes of variables

• Note that symbols may refer to each other: e.g., variable type/size
might be determined by a struct definition

int x, y, z;
float z[20];
int * * p;
struct S {
 int x;
 float y;
};
struct S q;

next: abstract syntax trees

