
Semantic Actions

taking action

• Building a parse tree tells us the syntax of a
program

• Whether it is “grammatically correct”

• What structures are used to build up the
program

• But we are interested in the semantics of the
program

• When we recognize a structure, we want to build
up some meaning for our program based on what
that structure is

prog ➝ decls stmtlist

decls ➝ decl decls

decls ➝ λ
decl ➝ TYPE ID

stmtlist ➝ stmt stmtlist

stmtlist ➝ λ
stmt → ID := NUM

stmt → ID := ID + NUM

taking action
int x
x = 0
x = x + 7

prog ➝ decls stmtlist

decls ➝ decl decls

decls ➝ λ
decl ➝ TYPE ID

stmtlist ➝ stmt stmtlist

stmtlist ➝ λ
stmt → ID := NUM

stmt → ID := ID + NUM

taking action
int x
x = 0
x = x + 7

prog ➝ decls stmtlist

decls ➝ decl decls

decls ➝ λ
decl ➝ TYPE ID

stmtlist ➝ stmt stmtlist

stmtlist ➝ λ
stmt → ID := NUM

stmt → ID := ID + NUM

prog ➝ decls stmtlist

decls ➝ decl decls

decls ➝ λ
decl ➝ TYPE ID

stmtlist ➝ stmt stmtlist

stmtlist ➝ λ
stmt → ID := NUM

stmt → ID := ID + NUM

taking action

• What kinds of actions might we want to take?

• Build up internal information in the compiler like
a symbol table
• Build up intermediate representation of program

like an abstract syntax tree

• With a symbol table plus an abstract syntax tree, we
can easily generate code for programs

taking action
int x
x = 0
x = x + 7

prog ➝ decls stmtlist

decls ➝ decl decls

decls ➝ λ
decl ➝ TYPE ID

stmtlist ➝ stmt stmtlist

stmtlist ➝ λ
stmt → ID := NUM

stmt → ID := ID + NUM

adding actions to parser
• Recursive descent parsers make it easy to take action

• As you match tokens and non-terminals, return information along with the rest
of the string

• Use that information to recursively build up the semantic information you want

Context decl(string prog) {
 TypeContext type = matchINT(prog); //match TYPE
 IdentContext id = matchID(type.rest); //match ID
 sym = new Symbol(type.text, id.text); //make symbol
 return new DeclContext(sym, id.rest); //return info
}

adding actions to parser
• Recursive descent parsers make it easy to take action

• As you match tokens and non-terminals, return information along with the rest
of the string

• Use that information to recursively build up the semantic information you want

Context prog(string prog) {
 DeclsContext ds = decls(prog); //match decls
 StmtlistContext ss =
 stmtlist(ds.rest); //match stmtlist
 symTable = buildSymbolTable(ds.declList);
 ast = buildAST(ss.stmts);
}

next: adding actions in ANTLR

