Configuration and CFSM

Xiaokang Qiu
Purdue University



Parsing using an LR(0) parser

How to construct an LR(0) parser?
How to determine the states and the goto/action tables!?

Basic idea: a state keeps track, simultaneously, of all possible productions that could
be matched given what it’s seen so far. When it sees a full production, match it.



Terminology for LR parsers

€¢_9)

Configuration: a production augmented with a *e
A — Xi ... Xi* Xi+l ... X

The “*” marks the point to which the production has been recognized. In this case, we have
recognized X ... X

Configuration set: all the configurations that can apply at a given point during the parse:
A—-B-*CD

A— B-*GH

T—->BZ

ldea: every configuration in a configuration set is a production that we could be in the
process of matching



Configuration closure set

® Include all the configurations necessary to recognize the next symbol after
the °

* For each configuration in set:
* |If next symbol is terminal, no new configuration added

* |If next symbol is non-terminal X, for each production of the form X — q,

add configuration X — <« closure0(S — + E $}) =
S—>ES$ { S—>-ES$
ESE+T|T E—--E+T
T — ID| (E) E—-T
T—>°1D
T — *(E)



Successor configuration set

Starting with the initial configuration set
sO = closureO({S — * a $})
an LR(0) parser will find the successor given the next symbol X

X can be either a terminal (the next token from the scanner) or a non-terminal (the
result of applying a reduction)

Determining the successor s’ = go_to0(s, X):

®* For each configuration in s of the form A - f* Xyadd A —->pB Xeytot

* s = closureQ(t)



CFSM

* CFSM = Characteristic Finite State Machine
* Nodes are configuration sets (starting from s0)

®* Arcs are go_to relationships
o St

S—=-ID

S >S$
S—ID

State 3




Building the goto table

®* We can just read this off from the CFSM

Symbol
ID $ S

State

DN =0
L




Building the action table

* Given the configuration set s:

* W/e shift if the next token matches a terminal after the ¢ in some configuration

(1

* A—>a*afPB Esanda €V, else error

®* We reduce production F if the ¢ is at the end of a production

* B — a-* € s where production P is B — «
* Extra actions:
* shift if goto table transitions between states on a non-terminal

* accept if we have matched the goal production



Action table

0 Shift

1 Reduce 2
State

2 Shift

3 Accept




