
Configuration and CFSM
Xiaokang Qiu

Purdue University



Parsing using an LR(0) parser

• How to construct an LR(0) parser?

• How to determine the states and the goto/action tables?

• Basic idea: a state keeps track, simultaneously, of all possible productions that could 
be matched given what it’s seen so far. When it sees a full production, match it.



Terminology for LR parsers
• Configuration: a production augmented with a “•”

• A → X1 ... Xi • Xi+1 ... Xj

• The “•” marks the point to which the production has been recognized. In this case, we have 
recognized X1 ... Xi

• Configuration set: all the configurations that can apply at a given point during the parse:

• A → B • CD

• A → B • GH

• T → B • Z

• Idea: every configuration in a configuration set is a production that we could be in the 
process of matching



Configuration closure set
• Include all the configurations necessary to recognize the next symbol after 

the •

• For each configuration in set:

• If next symbol is terminal, no new configuration added

• If next symbol is non-terminal X, for each production of the form X → α, 
add configuration X → •α

S → E $
E → E + T | T
T → ID | (E)

closure0({S → • E $}) = 
{
 S → • E $
 E → • E + T
 E → • T
 T → • ID
 T → • (E)
}



Successor configuration set

• Starting with the initial configuration set

• s0 = closure0({S → • α $})

• an LR(0) parser will find the successor given the next symbol X

• X can be either a terminal (the next token from the scanner) or a non-terminal (the 
result of applying a reduction)

• Determining the successor s’ = go_to0(s, X):

• For each configuration in s of the form A → β • X γ add A → β X • γ to t

• s’ = closure0(t)



CFSM
• CFSM = Characteristic Finite State Machine

• Nodes are configuration sets (starting from s0)

• Arcs are go_to relationships

S’ → S $
S → ID



Building the goto table
• We can just read this off from the CFSM

Symbol

ID $ S

State

0 1 2
1
2 3
3



Building the action table

• Given the configuration set s:

• We shift if the next token matches a terminal after the • in some configuration

• A → α • a β ∈ s and a ∈ Vt, else error

• We reduce production P if the • is at the end of a production

• B → α • ∈ s where production P is B → α

• Extra actions:

• shift if goto table transitions between states on a non-terminal

• accept if we have matched the goal production



Action table

State

0 Shift

1 Reduce 2

2 Shift

3 Accept


