
Bottom-up Parsing
Xiaokang Qiu

Purdue University



LR Parsers

• Parser which does a Left-to-right, Right-most derivation

• Rather than parse top-down, like LL parsers do, parse bottom-up, starting 
from leaves

• Basic idea: put tokens on a stack until an entire production is found



LR Parsers

• Basic idea: 

• shift tokens onto the stack. At any step, keep the set of productions that 
could generate the read-in tokens

• reduce the RHS of recognized productions to the corresponding non-
terminal on the LHS of the production. Replace the RHS tokens on the 
stack with the LHS non-terminal.



Data structures

• At each state, given the next token,

• A goto table defines the successor state

• An action table defines whether to

• shift – put the next state and token on the stack

• reduce – an RHS is found; process the production

• terminate – parsing is complete



Parsing using an LR(0) parser

• Maintain a parse stack that tells you what state you’re in

• Start in state 0

• In each state, look up in action table whether to:

• shift: consume a token off the input; look for next state in goto table; push next 
state onto stack

• reduce: match a production; pop off as many symbols from state stack as seen in 
production; look up where to go according to non-terminal we just matched; push 
next state onto stack

• accept: terminate parse



Simple example
1.P → S

2.S → x ; S

3.S → e
Symbol

x ; e P S

Stat
e

0 1 3 5
1 2
2 1 3 4
3
4
5

Action
Shift
Shift
Shift

Reduce 3
Reduce 2
Accept



Example
• Parse “x ; x ; e”

Step Parse Stack Reading Input Parser Action

1 0 | x ; x ; e Shift 1

2 0 1 x | ; x ; e Shift 2

3 0 1 2 x ; | x ; e Shift 1

4 0 1 2 1 x ; x | ; e Shift 2

5 0 1 2 1 2 x ; x ; | e Shift 3

6 0 1 2 1 2 3 x ; x ; e | Reduce 3 (goto 4)

7 0 1 2 1 2 4 x ; x ; S | Reduce 2 (goto 4)

8 0 1 2 4 x ; S | Reduce 2 (goto 4)

9 0 5 S | Accept


