Parser Generators

building a parser

We could build all the functions for a recursive

S XY$
descent parser ourselves
But that’s tedious! X—=avq
* Analyzing the grammar to build X—b
first/follow/predict sets X — Yq
* Writing the recursive functions to do the parsing Y = A\
* Dealing with issues in the grammar (need more Y — d

lookahead, need to rewrite)

automation

* Parser generators solve this problem
* given a grammar, produce a parser
* Can tell you when your grammar is “broken”
* Can often fix problems in the grammar automatically
* Common parser generators:
® Yacc/bison: classic parser generators that produce bottom-=up parsers
* ANTLR: produces recursive-descent parsers with some extra magic
* Automatically fix left-recursion, need for more lookahead

* Perform backtracking when necessary

ANTLR

Developed based on parser research done at Purdue!

Domain specific language for writing parsers

Lets programmer specify grammar, automatically generates recursive-descent
parser that builds the parse tree

Generates Java code (or can generate C++, Python, etc.)

Makes it easy to add semantic actions to take as the parse tree is processed

ANTLR

Developed based on parser research done at Purdue!

Domain specific language for writing parsers

Lets programmer specify grammar, automatically generates recursive-descent
parser that builds the parse tree

Generates Java code (or can generate C++, Python, etc.)

Makes it easy to add semantic actions to take as the parse tree is processed

statements : statement statements
| empty

statement : base stmt ';'
| 1f_stmt
| while_stmt

while_stmt : 'while' '(' cmp_expr ')' '{' statements '}'

ANTLR

Developed based on parser research done at Purdue!

Domain specific language for writing parsers

Lets programmer specify grammar, automatically generates recursive-descent
parser that builds the parse tree

Generates Java code (or can generate C++, Python, etc.)

Makes it easy to add semantic actions to take as the parse tree is processed

statements : statement statements- Keyword for A
| emptw
> Define simple tokens inline
statement : base_stmt Er
| 1f_stmt
| while_st

cmp_expr |') " '{'| statements

while_stmt : ['while'|

