
When LL(1) Fails



recall: how lookahead works

• Build the function for each non-terminal:

• Switch on the lookahead token in the string, pick 
rule to expand based on predict sets of the rules

• What if no rule matches the lookahead token? 
String not part of the language

S ➝ X Y $

X ➝ a Y q

X ➝ b

X ➝ Yq

Y ➝ λ
Y ➝ d {𝒅}

{𝒒, $}



how can this go wrong? 

• What if more than one rule matches the 
lookahead token? Grammar is not LL(1) — 
cannot be parsed top-down with one token 
of lookahead

S ➝ X Y $

X ➝ a Y q

X ➝ b

X ➝ Y
Y ➝ λ
Y ➝ d

First(S) = {a, b, d, $}

First(X) = {a, b, d, λ}

First(Y) = {d, λ}

Follow(S) = { }

Follow(X) = {d, $}

Follow(Y) = {d, q, $}



how can this go wrong? 

• What if more than one rule matches the 
lookahead token? Grammar is not LL(1) — 
cannot be parsed top-down with one token 
of lookahead

S ➝ X Y $

X ➝ a Y q

X ➝ b

X ➝ Y
Y ➝ λ
Y ➝ d

First(S) = {a, b, d, $}

First(X) = {a, b, d, λ}

First(Y) = {d, λ}

Follow(S) = { }

Follow(X) = {d, $}

Follow(Y) = {d, q, $}

{𝒅}

{𝒅, 𝒒, $}



how to fix?
• Sometimes can look ahead more (make an LL(k) grammar):

• Sometimes, more lookahead does not help:

S ➝ a Y

S ➝ a Z

Y ➝ b

Z ➝ c

S ➝ E

E ➝ (E + E)

E ➝ (E - E)

E ➝ x



other fixes 
• Can rewrite:

• Left recursion needs rewriting:

• Or could use more powerful parser:

• Backtracking parser, bottom-up parser

S ➝ E

E ➝ (E + E)

E ➝ (E - E)

E ➝ x

S ➝ E

E ➝ (E O E)

E ➝ x

O ➝ + | -

S ➝ E

E ➝ E + x

E ➝ x

S ➝ E

E ➝ x E’

E’ ➝ + x E’

E’ ➝ λ



next: taking action
But firs

t: A detour


