When LL(1) Fails

recall: how lookahead works

S XY$

* Build the function for each non-terminal: X—aYgq

* Switch on the lookahead token in the string, pick X — h
rule to expand based on predict sets of the rules

X = Yq
Y @A {q,$)
Y & d (d)

* What if no rule matches the lookahead token?
String not part of the language

how can this go wrong?

S XY$

* What if more than one rule matches the X—=aYq

lookahead token? Grammar is not LL(I) — X = b
cannot be parsed top-down with one token
X—Y

of lookahead
Y 2 A

Y — d

First(S) = {a, b, d, $} Follow(S) = {}
First(X) = {a, b, d, A} Follow(X) = {d, $}
First(Y) = {d, A} Follow(Y) = {d, q, $}

how can this go wrong?

®* What if more than one rule matches the
lookahead token? Grammar is not LL(I) —
cannot be parsed top-down with one token

of lookahead

First(S) = {a, b, d, $}
First(X) = {a, b, d, A}
First(Y) = {d, A}

Follow(S) = { }
Follow(X) = {d, $}
Follow(Y) = {d, q, $}

S XY$

X —=aYqg

X —b
X—Y

Y —=A @ae$
Y 2 d (d}

how to fix?

* Sometimes can look ahead more (make an LL(k) grammar):
S—ayY
S al
Y —b

L — C

* Sometimes, more lookahead does not help:

S — E
E — (E + E)
E — (E - E)

E— x

other fixes

* Can rewrite: S —E S—E
E— (E+ E) E— (EOE)
E— (E-E) E— x
E — x O —+]-
* Left recursion needs rewriting: > E
E2E+X —

E— x
®* Or could use more powerful parser:

* Backtracking parser, bottom-up parser

S— E
E— xF
EE—- +xF

E— A

next: taking action

