
Putting the Pieces together



predict sets for rules

• Remember: a recursive descent parser has one 
function for each non-terminal

• How do we decide which non-terminal to match for 
a rule?

• Build a predict set for each rule: the set of 
terminals we would want to see to predict rewriting 
the non-terminal with this rule

S ➝ X Y $

X ➝ a Y q

X ➝ b

X ➝ Yq

Y ➝ λ
Y ➝ d



predict sets for rules

• Predict(𝑋 → 𝛼) =

First(𝛼) if 𝜆 ∉First(𝛼)
(If the right-hand side cannot become the empty 
string, the terminals that this rule can generate come 
from the first set of the RHS)

(First(𝛼) - 𝜆) ∪ Follow(𝑋) otherwise
(If the RHS can become the empty string, then this 
rule can be used to “throw away” X, so need to 
consider what might come after X)

S ➝ X Y $

X ➝ a Y q

X ➝ b

X ➝ Yq

Y ➝ λ
Y ➝ d



predict sets for rules

• Predict(𝑋 → 𝛼) =

First(𝛼) if 𝜆 ∉First(𝛼)
(If the right-hand side cannot become the empty 
string, the terminals that this rule can generate come 
from the first set of the RHS)

(First(𝛼) - 𝜆) ∪ Follow(𝑋) otherwise
(If the RHS can become the empty string, then this 
rule can be used to “throw away” X, so need to 
consider what might come after X)

S ➝ X Y $

X ➝ a Y q

X ➝ b

X ➝ Yq

Y ➝ λ
Y ➝ d

First(S) = {a, b, d, q}

First(X) = {a, b, d, q}

First(Y) = {d, λ}

Follow(S) = { }

Follow(X) = {d, $}

Follow(Y) = {q, $}



predict sets for rules

• Predict(𝑋 → 𝛼) =

First(𝛼) if 𝜆 ∉First(𝛼)
(If the right-hand side cannot become the empty 
string, the terminals that this rule can generate come 
from the first set of the RHS)

(First(𝛼) - 𝜆) ∪ Follow(𝑋) otherwise
(If the RHS can become the empty string, then this 
rule can be used to “throw away” X, so need to 
consider what might come after X)

S ➝ X Y $

X ➝ a Y q

X ➝ b

X ➝ Yq

Y ➝ λ
Y ➝ d

First(S) = {a, b, d, q}

First(X) = {a, b, d, q}

First(Y) = {d, λ}

Follow(S) = { }

Follow(X) = {d, $}

Follow(Y) = {q, $}

{𝒃}



predict sets for rules

• Predict(𝑋 → 𝛼) =

First(𝛼) if 𝜆 ∉First(𝛼)
(If the right-hand side cannot become the empty 
string, the terminals that this rule can generate come 
from the first set of the RHS)

(First(𝛼) - 𝜆) ∪ Follow(𝑋) otherwise
(If the RHS can become the empty string, then this 
rule can be used to “throw away” X, so need to 
consider what might come after X)

S ➝ X Y $

X ➝ a Y q

X ➝ b

X ➝ Yq

Y ➝ λ
Y ➝ d

First(S) = {a, b, d, q}

First(X) = {a, b, d, q}

First(Y) = {d, λ}

Follow(S) = { }

Follow(X) = {d, $}

Follow(Y) = {q, $}

{𝒃}

{𝒅}



predict sets for rules

• Predict(𝑋 → 𝛼) =

First(𝛼) if 𝜆 ∉First(𝛼)
(If the right-hand side cannot become the empty 
string, the terminals that this rule can generate come 
from the first set of the RHS)

(First(𝛼) - 𝜆) ∪ Follow(𝑋) otherwise
(If the RHS can become the empty string, then this 
rule can be used to “throw away” X, so need to 
consider what might come after X)

S ➝ X Y $

X ➝ a Y q

X ➝ b

X ➝ Yq

Y ➝ λ
Y ➝ d

First(S) = {a, b, d, q}

First(X) = {a, b, d, q}

First(Y) = {d, λ}

Follow(S) = { }

Follow(X) = {d, $}

Follow(Y) = {q, $}

{𝒃}

{𝒅}

{𝒂}



predict sets for rules

• Predict(𝑋 → 𝛼) =

First(𝛼) if 𝜆 ∉First(𝛼)
(If the right-hand side cannot become the empty 
string, the terminals that this rule can generate come 
from the first set of the RHS)

(First(𝛼) - 𝜆) ∪ Follow(𝑋) otherwise
(If the RHS can become the empty string, then this 
rule can be used to “throw away” X, so need to 
consider what might come after X)

S ➝ X Y $

X ➝ a Y q

X ➝ b

X ➝ Yq

Y ➝ λ
Y ➝ d

First(S) = {a, b, d, q}

First(X) = {a, b, d, q}

First(Y) = {d, λ}

Follow(S) = { }

Follow(X) = {d, $}

Follow(Y) = {q, $}

{𝒃}

{𝒅}

{𝒂}

{𝒒, $}



predict sets for rules

• Predict(𝑋 → 𝛼) =

First(𝛼) if 𝜆 ∉First(𝛼)
(If the right-hand side cannot become the empty 
string, the terminals that this rule can generate come 
from the first set of the RHS)

(First(𝛼) - 𝜆) ∪ Follow(𝑋) otherwise
(If the RHS can become the empty string, then this 
rule can be used to “throw away” X, so need to 
consider what might come after X)

S ➝ X Y $

X ➝ a Y q

X ➝ b

X ➝ Yq

Y ➝ λ
Y ➝ d

First(S) = {a, b, d, q}

First(X) = {a, b, d, q}

First(Y) = {d, λ}

Follow(S) = { }

Follow(X) = {d, $}

Follow(Y) = {q, $}

{𝒃}

{𝒅}

{𝒂}

{𝒒, $}

{𝒅, 𝒒}



predict sets for rules

• Predict(𝑋 → 𝛼) =

First(𝛼) if 𝜆 ∉First(𝛼)
(If the right-hand side cannot become the empty 
string, the terminals that this rule can generate come 
from the first set of the RHS)

(First(𝛼) - 𝜆) ∪ Follow(𝑋) otherwise
(If the RHS can become the empty string, then this 
rule can be used to “throw away” X, so need to 
consider what might come after X)

S ➝ X Y $

X ➝ a Y q

X ➝ b

X ➝ Yq

Y ➝ λ
Y ➝ d

First(S) = {a, b, d, q}

First(X) = {a, b, d, q}

First(Y) = {d, λ}

Follow(S) = { }

Follow(X) = {d, $}

Follow(Y) = {q, $}

{𝒃}

{𝒅}

{𝒂}

{𝒒, $}

{𝒅, 𝒒}

{𝒂, 𝒃, 𝒅, 𝒒}



building the parser

• Build the function for each non-terminal:

• Switch on the lookahead token in the string, pick rule to expand based on 
predict sets of the rules

• Match the rule:

• If a terminal, match against the string

• If a non-terminal, invoke that non-terminal’s function



next: does this always work?


