Putting the Pieces together

- Remember: a recursive descent parser has one function for each non-terminal
- How do we decide which non-terminal to match for a rule?
- Build a predict set for each rule: the set of terminals we would want to see to predict rewriting the non-terminal with this rule

 $S \rightarrow X Y$ $X \rightarrow a Y q$ $X \rightarrow b$ $X \rightarrow Yq$ $\Upsilon \rightarrow \lambda$ $Y \rightarrow d$

• Predict($X \rightarrow \alpha$) =

First(α) if $\lambda \notin First(\alpha)$

(If the right-hand side cannot become the empty string, the terminals that this rule can generate come from the first set of the RHS)

(First(α) - λ) U Follow(X) otherwise (If the RHS can become the empty string, then this rule can be used to "throw away" X, so need to consider what might come after X)

 $S \rightarrow X Y$ \$ $X \rightarrow a Y q$ $X \rightarrow b$ $X \rightarrow Yq$ $\Upsilon \rightarrow \lambda$ $Y \rightarrow d$

• Predict($X \rightarrow \alpha$) =

First(α) if $\lambda \notin First(\alpha)$

(If the right-hand side cannot become the empty string, the terminals that this rule can generate come from the first set of the RHS)

(First(α) - λ) U Follow(X) otherwise (If the RHS can become the empty string, then this rule can be used to "throw away" X, so need to consider what might come after X)

- $First(S) = \{a, b, d, q\}$ $First(X) = \{a, b, d, q\}$ $First(Y) = \{d, \lambda\}$
- Follow(S) = $\{ \}$ $Follow(X) = \{d, \$\}$ Follow(Y) = $\{q, \$\}$

 $S \rightarrow X Y$ \$

 $X \rightarrow a Y q$

 $X \rightarrow b$

 $X \rightarrow Yq$

 $\Upsilon \rightarrow \lambda$

 $Y \rightarrow d$

• Predict($X \rightarrow \alpha$) =

First(α) if $\lambda \notin First(\alpha)$

(If the right-hand side cannot become the empty string, the terminals that this rule can generate come from the first set of the RHS)

(First(α) - λ) U Follow(X) otherwise (If the RHS can become the empty string, then this rule can be used to "throw away" X, so need to consider what might come after X)

- $First(S) = \{a, b, d, q\}$ $First(X) = \{a, b, d, q\}$ $First(Y) = \{d, \lambda\}$
- $Y \rightarrow d$ Follow(S) = $\{ \}$ $Follow(X) = \{d, \$\}$ Follow(Y) = $\{q, \$\}$

 $S \rightarrow X Y$ \$

 $X \rightarrow a Y q$

 $X \rightarrow b$

 $X \rightarrow Yq$

 $\Upsilon \rightarrow \lambda$

{**b**}

• Predict($X \rightarrow \alpha$) =

First(α) if $\lambda \notin First(\alpha)$

(If the right-hand side cannot become the empty string, the terminals that this rule can generate come from the first set of the RHS)

(First(α) - λ) U Follow(X) otherwise (If the RHS can become the empty string, then this rule can be used to "throw away" X, so need to consider what might come after X)

 $First(S) = \{a, b, d, q\}$ $First(X) = \{a, b, d, q\}$ $First(Y) = \{d, \lambda\}$

 $X \rightarrow b$ {**b**} $X \rightarrow Yq$ $\Upsilon \rightarrow \lambda$ $Y \rightarrow d$ $\{d\}$ Follow(S) = $\{ \}$ $Follow(X) = \{d, \$\}$ Follow(Y) = $\{q, \$\}$

 $S \rightarrow X Y$

 $X \rightarrow a Y q$

• Predict($X \rightarrow \alpha$) =

First(α) if $\lambda \notin First(\alpha)$

(If the right-hand side cannot become the empty string, the terminals that this rule can generate come from the first set of the RHS)

(First(α) - λ) U Follow(X) otherwise (If the RHS can become the empty string, then this rule can be used to "throw away" X, so need to consider what might come after X)

 $First(S) = \{a, b, d, q\}$ $First(X) = \{a, b, d, q\}$ $First(Y) = \{d, \lambda\}$

 $S \rightarrow X Y$ $X \rightarrow a Y q \{a\}$ $X \rightarrow b$ {**b**} $X \rightarrow Yq$ $\Upsilon \rightarrow \lambda$ $Y \rightarrow d$ $\{d\}$ Follow(S) = $\{ \}$

 $Follow(X) = \{d, \$\}$

Follow(Y) = $\{q, \$\}$

• Predict($X \rightarrow \alpha$) =

First(α) if $\lambda \notin First(\alpha)$

(If the right-hand side cannot become the empty string, the terminals that this rule can generate come from the first set of the RHS)

(First(α) - λ) U Follow(X) otherwise (If the RHS can become the empty string, then this rule can be used to "throw away" X, so need to consider what might come after X)

 $S \rightarrow X Y$ $X \rightarrow a Y q \{a\}$ $X \rightarrow b$ {**b**} $X \rightarrow Yq$ $\Upsilon \rightarrow \lambda$ {**q**,\$} $\mathbf{Y} \rightarrow \mathbf{d}$ $\{d\}$ Follow(S) = $\{ \}$

 $First(S) = \{a, b, d, q\}$ $First(X) = \{a, b, d, q\}$ $Follow(X) = \{d, \$\}$ $First(Y) = \{d, \lambda\}$ Follow(Y) = $\{q, \$\}$

• Predict($X \rightarrow \alpha$) =

First(α) if $\lambda \notin First(\alpha)$

(If the right-hand side cannot become the empty string, the terminals that this rule can generate come from the first set of the RHS)

(First(α) - λ) U Follow(X) otherwise (If the RHS can become the empty string, then this rule can be used to "throw away" X, so need to consider what might come after X)

- $S \rightarrow X Y$ $X \rightarrow a Y q \{a\}$ $X \rightarrow b$ {**b**}
- $X \rightarrow Yq$ $\{\boldsymbol{d}, \boldsymbol{q}\}$
- $\Upsilon \rightarrow \lambda$ {**q**,\$}
- $Y \rightarrow d$ $\{d\}$
- $First(S) = \{a, b, d, q\}$ Follow(S) = $\{ \}$ $First(X) = \{a, b, d, q\}$ $Follow(X) = \{d, \$\}$ $First(Y) = \{d, \lambda\}$ Follow(Y) = $\{q, \$\}$

• Predict($X \rightarrow \alpha$) =

First(α) if $\lambda \notin First(\alpha)$

(If the right-hand side cannot become the empty string, the terminals that this rule can generate come from the first set of the RHS)

(First(α) - λ) U Follow(X) otherwise (If the RHS can become the empty string, then this rule can be used to "throw away" X, so need to consider what might come after X)

 $First(Y) = \{d, \lambda\}$

- $S \rightarrow X Y$ {a, b, d, q}
- $X \rightarrow a Y q \{a\}$
- $X \rightarrow b$ {**b**}
- $X \rightarrow Yq$ $\{\boldsymbol{d}, \boldsymbol{q}\}$
- $\Upsilon \rightarrow \lambda$ {**q**,\$}
- $Y \rightarrow d$ $\{d\}$
- $First(S) = \{a, b, d, q\}$ Follow(S) = $\{ \}$ $First(X) = \{a, b, d, q\}$ $Follow(X) = \{d, \$\}$
 - Follow(Y) = $\{q, \$\}$

- Build the function for each non-terminal:
 - predict sets of the rules
 - Match the rule:
 - If a terminal, match against the string
 - If a non-terminal, invoke that non-terminal's function

building the parser

• Switch on the lookahead token in the string, pick rule to expand based on

next: does this always work?