
Building a Parser



top-down parsers
• A top-down parser determines the structure of a parse tree by expanding it 

from the root node down

• Expands the tree in pre-order

• For each node in the parse tree, figure out what it expands to

• LL(1): Top-down derivation using 1 symbol of lookahead

• Common implementations:

• Recursive descent: parser is a set of mutually-recursive functions

• LL(1) parser: table-based parser that operates similarly to recursive-descent



context free grammars as functions
• Every nonterminal corresponds to a function:

• X(): consume a prefix of the input to match X

• B(): consume a prefix of the input to match B

• Think about writing a function to “match” a string to a non-terminal:

Match X → a a B c against a a b b c

• If there is a terminal in the rule, match up the terminal against the string

• Match X → a a B c against a a b b c

• Match X → a a B c against a a b b c

• If there is a non-terminal in the rule, call the function for that non-terminal 
with the rest of the string and assume that it does its job:

• Match X → a a B c against a a b b c

• When that function returns, keep matching the non-terminal

• Match X → a a B c against a a b b c

X ➝ a a B c

B ➝ b b



how to match
• To match a non-terminal against a string, walk over the symbols of the right hand 

side of the rule

• If it’s a terminal, consume that token off the string

• If it’s a non-terminal, call the function for that non-terminal [which will 
consume characters off the string matching that non-terminal]

• Matching a rule may not consume all the tokens on a string

• Just return the rest of the string from the function [think: what if this function 
was called recursively?]

• What if there are multiple rules for a non-terminal?



disambiguating multiple rules
• Suppose we call the function X() to 

match the non-terminal X in a string

• 3 choices! How do we know what 
tokens to match in the string?

• Idea:

• Look at the first token on the string 
we’re trying to match

• What rule could generate that 
token?

X ➝ a Y q

X ➝ b

X ➝ Y

Y ➝ c

Y ➝ d



disambiguating multiple rules
• Suppose we call the function X() to 

match the non-terminal X in a string

• 3 choices! How do we know what 
tokens to match in the string?

• Idea:

• Look at the first token on the string 
we’re trying to match

• What rule could generate that 
token?

X ➝ a Y q

X ➝ b

X ➝ Y

Y ➝ c

Y ➝ d

Any string generated by this rule 
has to start with an ‘a’



disambiguating multiple rules
• Suppose we call the function X() to 

match the non-terminal X in a string

• 3 choices! How do we know what 
tokens to match in the string?

• Idea:

• Look at the first token on the string 
we’re trying to match

• What rule could generate that 
token?

X ➝ a Y q

X ➝ b

X ➝ Y

Y ➝ c

Y ➝ d

Any string generated by this rule 
has to start with a ‘b’



disambiguating multiple rules
• Suppose we call the function X() to 

match the non-terminal X in a string

• 3 choices! How do we know what 
tokens to match in the string?

• Idea:

• Look at the first token on the string 
we’re trying to match

• What rule could generate that 
token?

X ➝ a Y q

X ➝ b

X ➝ Y

Y ➝ c

Y ➝ d

What about this rule?



disambiguating multiple rules
• Suppose we call the function X() to 

match the non-terminal X in a string

• 3 choices! How do we know what 
tokens to match in the string?

• Idea:

• Look at the first token on the string 
we’re trying to match

• What rule could generate that 
token?

X ➝ a Y q

X ➝ b

X ➝ λ
Y ➝ c

Y ➝ d

What about now?



first and follow sets

• Figuring out which token to look for to match a given rule is complicated

• But we can simplify this by computing first and follow sets

• First(𝛼) = what terminals (or λ) might start any string you derive from 𝛼
• If I start with 𝛼 and apply rules, what terminals might the string start with?

• Follow(X) = what terminals might come after the non-terminal X

• If I start with the start symbol and apply rules, what terminals can I make 
come after X?



first and follow sets

• First sets defined for strings:

• First(abX) = {a}

• First(Y) = {λ, d}

• First(S) = {a, b, d, $}

• Follow sets defined for non-terminals:

• Follow(X) = {d, $}

• Follow(Y) = {q, d, $}

S ➝ X Y $

X ➝ a Y q

X ➝ b

X ➝ Y

Y ➝ λ
Y ➝ d

Special symbol we put at the end 
of the start rule



next: computing first and follow 
sets


