
Parsing



review: CFGs
• Given a start rule, productions tell us how 

we can rewrite non-terminals into other 
strings

• Some productions rewrite into 𝜆. That just 
removes the non-terminal

• To derive the string “a a b b b” we can do 
the following rewrites:

S ⇒ A B ⇒ A a B ⇒ a a B ⇒ a a B b ⇒ 
a a B b b ⇒ a a b b b

S ➝ A B

A ➝ A a

A ➝ a

B ➝ B b

B ➝ b



the problem of parsing
• Using a grammar to generate a string is straightforward

• But parsing solves the opposite problem: is a string part of a language?

• Is there some combination of rewrites that will generate a string?

• What rewrites were those?



parse trees
• Using a grammar to generate a string is 

straightforward

• But parsing solves the opposite problem: is a 
string part of a language?

• A parse tree shows how a string was 
generated

• Interior nodes: non-terminals

• Leaf nodes: terminals

• Children of interior nodes: the terminals and 
non-terminals generated by applying a rule



what does a parser do?

• Parsing is recognizing members in a language specified/defined/generated by a 
grammar

• Determine the structure of a program (parse tree)

• A parse tree is like a sentence diagram

The red cat pushed the ball under the table

• When a parser recognizes a rule, it typically takes some action

• A compiler might generate code or intermediate representation

• An interpreter might execute the code



next: how do we build a parser?


