Context-free Grammar



a simple grammar

* Grammar (G = (V,,1/,,S5,P)

® |/, is the set of terminals

Start symbol S — A B

® |/ is the set of non-terminals

Al — Al Terminals

® 5 € 1/, is the start symbol
. . Non-terminals A — a
® P is the set of productions \

* Each production takes the

form: B—b
Vn — (Vn‘Vt)* \Production

* Grammar is context-free
(why?)




how does a grammar define a language!

* Given a start rule, productions tell us how

we can rewrite hon-terminals into other S — AB
strings
. o . A—Aa
* Some productions rewrite into A. That just
removes the non-terminal A —a
B—Bb
®* To derive the string “aa b b b” we can do B—b

the following rewrites:

S=>AB=>AaB=>aaB=22a2aBb=
aaBbb=>aabbb



terminology

* Strings are composed of symbols
* AAaaBbbAaisastring

* We will use Greek letters to represent strings composed of both terminals and
non-terminals

* L(G) is the language produced by the grammar G
* All strings consisting of only terminals that can be produced by G
® |n our example, L(G) = a™b”
* The language of a context-free grammar is a context-free language

* All regular languages are context-free, but not vice versa



matching { and }

* So how can we use a CFG to define a language for matching braces!?

S 1S
S — A

* Note that we can rewrite a non-terminal to A to make it “disappear”



programming language syntax

Programming language syntax is defined with CFGs
Constructs in language become non-terminals

May use auxiliary non-terminals to make it easier to define constructs

if stmt — if (cond _expr ) then statement else_part
else_part — else statement

else_part — A

Tokens in language become terminals



problem: how do we tell if a string
matches a CFG!?



