Why aren't regular expressions enough?

- A language is a (possibly infinite) set of strings
- Regular expressions define regular languages
 - All regular languages can be defined by regular expressions (and anything you can define with a regular expression is a regular language)
 - All regular languages can be recognized by a finite automaton (and anything you can recognize with a finite automaton is a regular language)

review: what is a language

so what's beyond regular languages?

- Key consequence of correspondence between regular languages and finite automaton:

 - If a language is regular it *must be* recognizable by a finite automaton • If a language cannot be recognized by a finite automaton, it cannot be regular
- Consider the following piece of C code: {{{ int x; }}}
- Need to make sure there are as many $\{ (3, 3) \}$ and no limit to nesting depth • Can you do this with a finite automaton? Can you do this with a regular
- expression?

key challenge

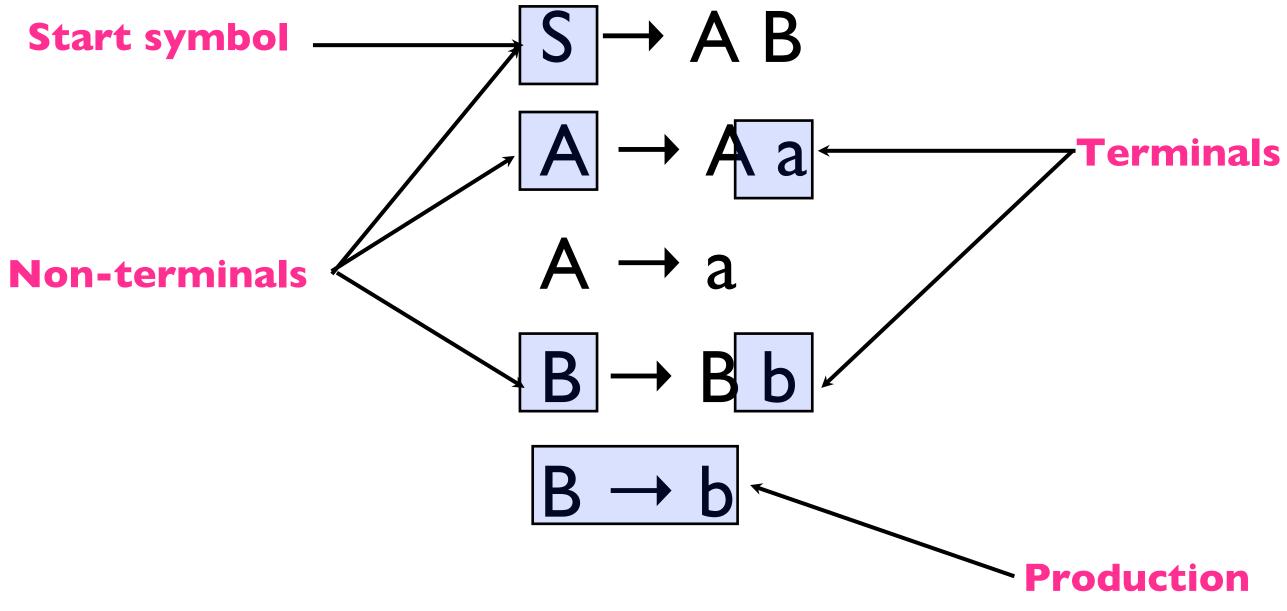
- The **structure** of a program is recursive:
 - If statements nested inside while loops nested inside for loops nested inside if statements nested inside ...
 - Nesting can be arbitrarily deep
- Accounting for this kind of recursive nesting is beyond what regular expressions can do — need to keep track of how deep you are in nesting to make sure everything lines up
- Need a new kind of language formalism for specifying these types of languages: context-free grammars

a simple grammar

- Grammar $G = (V_t, V_n, S, P)$
- V_t is the set of terminals
- V_n is the set of non-terminals
- $S \in V_n$ is the start symbol
- *P* is the set of productions
- Each production takes the form:

 $V_n \rightarrow \lambda | (V_n | V_t)^+$

Grammar is **context-free** (why?)



how does a grammar define a language?

- Given a start rule, productions tell us how we can *rewrite* non-terminals into other strings
- Some productions rewrite into λ . That just removes the non-terminal
- To derive the string "a a b b b" we can do the following rewrites:

 $S \Rightarrow A B \Rightarrow A a B \Rightarrow a a B \Rightarrow a a B b b$

 $S \rightarrow A B$ $A \rightarrow A a$ $A \rightarrow a$ $B \rightarrow B b$ $B \rightarrow b$

- Strings are composed of symbols
 - A A a a B b b A a is a string
- We will use Greek letters to represent strings composed of both terminals and non-terminals
- L(G) is the language produced by the grammar G
 - All strings consisting of only terminals that can be produced by G
 - In our example, $L(G) = a^+b^+$
 - The language of a context-free grammar is a **context-free language**
 - All regular languages are context-free, but not vice versa

matching { and }

• So how can we use a CFG to define a language for matching braces?

• Note that we can rewrite a non-terminal to λ to make it "disappear"

 $S \rightarrow \{S\}$ $S \rightarrow \lambda$

- Programming language syntax is defined with CFGs
- Constructs in language become non-terminals
- May use auxiliary non-terminals to make it easier to define constructs

 - if stmt \rightarrow if (cond_expr) then statement else_part else_part \rightarrow else statement

else part $\rightarrow \lambda$

Tokens in language become terminals

programming language syntax

problem: how do we tell if a string matches a CFG?