
Why aren’t regular expressions 
enough?



review: what is a language

• A language is a (possibly infinite) set of strings

• Regular expressions define regular languages

• All regular languages can be defined by regular expressions (and anything you 
can define with a regular expression is a regular language)

• All regular languages can be recognized by a finite automaton (and anything you 
can recognize with a finite automaton is a regular language)



so what’s beyond regular languages?
• Key consequence of correspondence between regular languages and finite 

automaton: 

• If a language is regular it must be recognizable by a finite automaton

• If a language cannot be recognized by a finite automaton, it cannot be regular

• Consider the following piece of C code: 

• Need to make sure there are as many ‘{’ as ‘}’ — and no limit to nesting depth

• Can you do this with a finite automaton? Can you do this with a regular 
expression?

{{{ int x; }}}



key challenge

• The structure of a program is recursive:

• If statements nested inside while loops nested inside for loops nested inside if 
statements nested inside …

• Nesting can be arbitrarily deep

• Accounting for this kind of recursive nesting is beyond what regular expressions 
can do — need to keep track of how deep you are in nesting to make sure 
everything lines up

• Need a new kind of language formalism for specifying these types of languages: 
context-free grammars



a simple grammar

S ➝ A B

A ➝ A a

A ➝ a

B ➝ B b

B ➝ b

Non-terminals

Start symbol

Terminals

Production

• Grammar 𝐺 = (𝑉! , 𝑉", 𝑆, 𝑃)
• 𝑉! is the set of terminals

• 𝑉! is the set of non-terminals

• 𝑆 ∈ 𝑉" is the start symbol

• 𝑃 is the set of productions

• Each production takes the 
form: 

𝑉" → 𝜆|(𝑉"|𝑉!)#

• Grammar is context-free 
(why?)



how does a grammar define a language?

S ➝ A B

A ➝ A a

A ➝ a

B ➝ B b

B ➝ b

• Given a start rule, productions tell us how 
we can rewrite non-terminals into other 
strings

• Some productions rewrite into 𝜆. That just 
removes the non-terminal

• To derive the string “a a b b b” we can do 
the following rewrites:

S ⇒ A B ⇒ A a B ⇒ a a B ⇒ a a B b ⇒ 
a a B b b ⇒ a a b b b



terminology

• Strings are composed of symbols

• A A a a B b b A a is a string

• We will use Greek letters to represent strings composed of both terminals and 
non-terminals

• L(G) is the language produced by the grammar G

• All strings consisting of only terminals that can be produced by G

• In our example, L(G) = a+b+

• The language of a context-free grammar is a context-free language
• All regular languages are context-free, but not vice versa



matching { and } 

• So how can we use a CFG to define a language for matching braces?

• Note that we can rewrite a non-terminal to 𝜆 to make it “disappear”

S ➝ { S }

S ➝ 𝜆



programming language syntax

• Programming language syntax is defined with CFGs

• Constructs in language become non-terminals

• May use auxiliary non-terminals to make it easier to define constructs

• Tokens in language become terminals

if_stmt ➝ if ( cond_expr ) then statement else_part

else_part ➝ else statement

else_part ➝ λ



problem: how do we tell if a string 
matches a CFG?


