
Regex engines

Regular
expression NFA DFA Lexer

code for DFA
• Using a transition table, it is straightforward to write a program to recognize

strings in a regular language

state = initial_state; //start state of FA
while (true) {
 next_char = getc();
 if (next_char == EOF) break;
 next_state = T[state][next_char];
 if (next_state == ERROR) break;
 state = next_state;
}
if (is_final_state(state))
 //recognized a valid string
else
 handle_error(next_char);

State
Character

a b c

1 2

2 3

3 4

4 2 4

lookahead

• Up until now, we have only considered matching an entire string to see if it is in a
regular language

• What if we want to match multiple tokens from a file?

• Multiple token definitions

• Distinguish between int a and inta

• We need to look ahead to see if the next character belongs to the current token

• If it does, we can continue

• If it doesn’t, the next character becomes part of the next token

breaking ties

• What if we can add the next character to the current token or end the current
token?

• Scanner engine has tie breaking rules

• Always make a token as long as possible (or as short as possible—this is what
Python’s regex engine does)

• If multiple possible tokens match, give them a priority order (e.g., prioritize
tokens defined first)

general approach
• Remember states (T) that can be final states

• Buffer the characters from then on

• If stuck in a non-final state, back up to T, restore buffered characters to stream

• Example: 12.3e+q

1 2 . 3 e + qinput stream

FA processing T Error!

antlr
• A tool for building scanners and parsers

• Language for defining tokens, automatically converted into Java, C, Python, etc.

• An example of compiling one high level language to another!

• Tokens

• Token definition: tokenName : regex1 | regex2 | …

• Define tokens in precedence order

• Character classes

• Look similar to token definitions

• fragment characterClassName : regex1 | regex2 ...

• Can use character classes when defining tokens

parsing

• We’ve covered how to tokenize an input program

• But how do we decide what tokens actually say?

• How do we recognize that

 IF ID(a) OP(<) ID(b) { ID(a) ASSIGN LIT(5) ; }

is an if-statement?

• We need something more powerful!

