Regex engines

Regular

expression

code for DFA

* Using a transition table, it is straightforward to write a program to recognize
strings in a regular language

state = initial state; //start state of FA
while (true) A

Seate Character next_char = getc();

a b C if (next char == EOF) break:

|) next_state = T[statel [next_char];

if (next state == ERROR) break;

3 state = next_state;

2
3 4 ¥
4

if (is final state(state))
//recognized a valid string
else

handle _error(next_char);

lookahead

* Up until now, we have only considered matching an entire string to see if it is in a
regular language

* What if we want to match multiple tokens from a file?
* Multiple token definitions
* Distinguish between int a and inta
* We need to look ahead to see if the next character belongs to the current token
* If it does, we can continue

* |f it doesn’t, the next character becomes part of the next token

breaking ties

* What if we can add the next character to the current token or end the current
token!?

® Scanner engine has tie breaking rules

* Always make a token as long as possible (or as short as possible—this is what
Python’s regex engine does)

* If multiple possible tokens match, give them a priority order (e.g., prioritize
tokens defined first)

general approach

* Remember states (T) that can be final states
the characters from then on
* If stuck in a non-final state, back up to T, restore buffered characters to stream

* Example: 12.3e+q

antlr

* A tool for building scanners and parsers

* lLanguage for defining tokens, automatically converted into Java, C, Python, etc.
* An example of compiling one high level language to another!
* Tokens
* Token definition: tokenName : regex| | regex2 | ...
* Define tokens in precedence order
® Character classes
* Look similar to token definitions
* fragment characterClassName : regex| | regex2 ...

® Can use character classes when defining tokens

parsing

We've covered how to tokenize an input program
But how do we decide what tokens actually say?

How do we recognize that
IF ID(a) OP(<) ID(b) { ID(a) ASSIGN LIT(5) ; }

is an if-statement!?

We need something more powerful!

