
Finite Automata



so you have a regex. now what?

• A regular expression defines a regular language

• Tells us what strings (words) are in the language

• But how do we recognize a regular language?

• Remember that a scanner needs to find the words in a language

• The problem it is solving is: “does this sequence of characters match this 
regular expression?”

• Key enabling feature: a systematic procedure for converting a regular expression 
into code that recognizes when a string matches a regular expression



finite automata
• Finite state machine that will only accept a string if it is in the set defined by a 

regular expression

(a b c+)+

1 2 3 4



transition tables
• Table encoding states and transitions of FA

• 1 row per state, 1 column per possible character

• Each entry: if automaton in a particular state sees a character, what is the next 
state?

State
Character

a b c

1 2

2 3

3 4

4 2 4

1 2 3 4



Non-deterministic Finite Automata



deterministic vs non-deterministic

• An automaton is deterministic if at each step there is only one possible 
transition to take on a given character

• No choices to be made

• But an automaton can be non-deterministic: at a particular state, there may 
be more than one transition to take on a given character

• Can also have 𝜆-transitions—transitions that consume no characters

• Think of these as optional transitions: from a state, the machine can take a 𝜆 
transition “for free”



“running” a non-deterministic automaton

• Intuition: take every possible path through an NFA

• Think: parallel execution of NFA

• Maintain a “pointer” that tracks the current state

• Every time there is a choice, “split” the pointer, and have one pointer follow 
each choice

• Track each pointer simultaneously

• If a pointer gets stuck, stop tracking it

• If any pointer reaches an accept state at the end of input, accept



example
• How does the automaton below handle the string aba


