
Other Loop Optimizations



Loop interchange

• Interchange doubly-nested loop to

• Improve locality

• Improve parallelism

• Move parallel loop to outer loop (coarse grained parallelism)



Loop interchange legality

• We noted that loop interchange is not always legal, because it reorders a 
computation

• Can we use dependences to determine legality?



Loop interchange dependences
• Consider interchanging the following loop, 

with the dependence graph to the right:

• Distance vector (1, 2)

• Direction vector (+, +)

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+1][j+2] = a[i][j] + 1



Loop interchange dependences
• Consider interchanging the following loop, 

with the dependence graph to the right:

• Distance vector (2, 1)

• Direction vector (+, +)

• Distance vector gets swapped!

for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
a[i+1][j+2] = a[i][j] + 1



Loop interchange legality

• Interchanging two loops swaps the order of their entries in distance/direction 
vectors

• (0, +) → (+, 0)

• (+, 0) → (0, +)

• But remember, we can’t have backwards dependences

• (+, –) → (–, +)

• Illegal dependence → Loop interchange not legal!



Loop interchange dependences
• Example of illegal interchange:

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+1][j-2] = a[i][j] + 1



Loop interchange dependences
• Example of illegal interchange:

• Flow dependences turned into anti-
dependences

• Result of computation will change!

for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
a[i+1][j-2] = a[i][j] + 1



Loop fusion/distribution
• Loop fusion: combining two loops into a single loop

• Improves locality, parallelism

• Loop distribution: splitting a single loop into two loops

• Can increase parallelism (turn a non-parallelizable loop into a parallelizable loop)

• Legal as long as optimization maintains dependences

• Every dependence in the original loop should have a dependence in the optimized loop

• Optimized loop should not introduce new dependences



Fusion/distribution example
• Code 1:

• Dependence graph

• All red iterations finish before blue 
iterations → flow dependence

for (i = 0; i < N; i++)
a[i - 1] = b[i]

for (j = 0; j < N; j++)
c[j] = a[j]

• Code 2:

• Dependence graph

• i iterations finish before i+1 iterations →
flow dependence now an anti dependence!

for (i = 0; i < N; i++)
a[i - 1] = b[i]
c[i] = a[i]



Fusion/distribution utility

for (i = 0; i < N; i++)
a[i] = a[i - 1]

for (j = 0; j < N; j++)
b[j] = a[j]

for (i = 0; i < N; i++)
a[i] = a[i - 1]
b[i] = a[i]

Fusion

Distribution

• Fusion and distribution both legal

• Right code has better locality, but cannot be parallelized due to loop carried 
dependences

• Left code has worse locality, but blue loop can be parallelized



fin!


