
Loop parallelization



Loop-carried dependence

• The key concept for parallelization is the loop carried dependence

• A dependence that crosses loop iterations

• If there is a loop carried dependence, then that loop cannot be parallelized

• Some iterations of the loop depend on other iterations of the same loop



Examples

for (i = 0; i < N; i++)
a[2*i] = a[i];

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+1][j] = a[i][j+2] + 1

Later iterations of i loop 
depend on earlier iterations

Later iterations of both i and
j loops depend on earlier iterations



Some subtleties

• Dependences might only be carried over 
one loop!

• Can parallelize i loop, but not j loop

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i][j+1] = a[i][j] + 1



Some subtleties

• Dependences might only be carried 
over one loop!

• Can parallelize j loop, but not i loop

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+1][j] = a[i-1][j] + 1



Direction vectors

• So how do direction vectors help?

• If there is a non-zero entry for a loop dimension, that means that there is a loop 
carried dependence over that dimension

• If an entry is zero, then that loop can be parallelized!

• May be able to parallelize inner loop even if entry is not zero, but you have to 
carefully structure parallel execution


