Representing Dependence

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

____ν,ι < a[i + 2] = a[i] }

for (i = 0; i < N; i++) {

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

- Step I: Create nodes, I for each iteration
 - Note: not I for each array location!

$$\bigcirc 1 \qquad (2)$$

0; i < N; i++) { = <mark>a</mark>[i]

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

• Step 2: Determine which array elements are read and written in each iteration

- Represent each dynamic instance of a loop as a point in a graph
- Draw arrows from one point to another to represent dependences

• Step 3: Draw arrows to represent dependences

2-D iteration space graphs

- Can do the same thing for doublynested loops
 - 2 loop counters

- Can also represent output and anti dependences
 - Use different kinds of arrows for clarity. E.g.

• Can we represent dependences in a more compact way?

• Crucial problem: Iteration space graphs are potentially infinite representations!

- Compiler researchers have devised compressed representations of dependences
 - Capture the same dependences as an iteration space graph
 - May lose precision (show more dependences than the loop actually has)
- Two types
 - **Distance vectors:** captures the "shape" of dependences, but not the particular source and sink
 - **Direction vectors:** captures the "direction" of dependences, but not the particular shape

Distance and direction vectors

Distance vector

- Represent each dependence arrow in an iteration space graph as a vector

- Distance vector for this iteration space: (2)
 - Each dependence is 2 iterations forward

Captures the "shape" of the dependence, but loses where the dependence originates

2-D distance vectors

- Distance vector for this graph:
 - (I, -2)
 - +1 in the i direction, -2 in the j direction
- Crucial point about distance vectors: they are always "positive"
 - First non-zero entry has to be positive
 - Dependences can't go backwards in time

More complex example

• Can have multiple distance vectors

(2,4) (3,4) (4,4) (1,4) (0,4) (3,3) (2,3) (4,3) (0,3) (1,3) 2,2 (1,2) (3,2) (4,2) (0,2) (2,1) (4,1) (3,1) (1,1) (0,1) (4,0) 2,0 (3,0) (1,0) 0,0

More complex example

• Can have multiple distance vectors

- Distance vectors
 - (I, -2)
 - (2, 0)
- Important point: order of vectors depends on order of loops, not use in arrays

Problems with distance vectors

- Can't always summarize as easily!
- Running example:

• The preceding examples show how distance vectors can precisely summarize all the dependences in a loop nest using just a small number of distance vectors

- What are the distance vectors for this code?
 - (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
 - What happens if we try to reconstruct the iteration space graph?

- What are the distance vectors for this code?
 - (1), (2), (3), (4) ...
- Note: we have information about the length of each vector, but not about the source of each vector
 - What happens if we try to reconstruct the iteration space graph?

Direction vectors

- The whole point of distance vectors is that we want to be able to succinctly capture the dependences in a loop nest
 - But in the previous example, not only did we add a lot of extra information, we still had an infinite number of distance vectors
- Idea: summarize distance vectors, and save only the direction the dependence was in
 - $(2, -1) \rightarrow (+, -)$
 - $(0, 1) \rightarrow (0, +)$
 - $(0, -2) \rightarrow (0, -)$ (can't happen; dependences have to be positive)
 - Notation: sometimes use '<' and '>' instead of '+' and '-'

Why use direction vectors?

- Direction vectors lose a lot of information, but do capture some useful information
 - Whether there is a dependence (anything other than a '0' means there is a dependence)
 - Which dimension and direction the dependence is in
- Many times, the only information we need to determine if an optimization is legal is captured by direction vectors
 - Loop parallelization
 - Loop interchange