
Representing Dependence



Iteration space graphs
• Represent each dynamic instance of a loop as a point in a graph

• Draw arrows from one point to another to represent dependences

for (i = 0; i < N; i++) {
a[i + 2] = a[i]
}



Iteration space graphs
• Represent each dynamic instance of a loop as a point in a graph

• Draw arrows from one point to another to represent dependences

• Step 1: Create nodes, 1 for each iteration

• Note: not 1 for each array location!

for (i = 0; i < N; i++) {
a[i + 2] = a[i]
}



Iteration space graphs
• Represent each dynamic instance of a loop as a point in a graph

• Draw arrows from one point to another to represent dependences

• Step 2: Determine which array elements are read and written in each iteration

for (i = 0; i < N; i++) {
a[i + 2] = a[i]
}



Iteration space graphs
• Represent each dynamic instance of a loop as a point in a graph

• Draw arrows from one point to another to represent dependences

• Step 3: Draw arrows to represent dependences

for (i = 0; i < N; i++) {
a[i + 2] = a[i]
}



2-D iteration space graphs
• Can do the same thing for doubly-

nested loops

• 2 loop counters

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
…
a[i+1][j] = a[i][j+2] + 1
…



Iteration space graphs
• Can also represent output and anti dependences

• Use different kinds of arrows for clarity. E.g.

• for output

• for anti

• Crucial problem: Iteration space graphs are potentially infinite representations!

• Can we represent dependences in a more compact way?



Distance and direction vectors

• Compiler researchers have devised compressed representations of dependences

• Capture the same dependences as an iteration space graph

• May lose precision (show more dependences than the loop actually has)

• Two types

• Distance vectors: captures the “shape” of dependences, but not the particular 
source and sink

• Direction vectors: captures the “direction” of dependences, but not the 
particular shape



Distance vector
• Represent each dependence arrow in an iteration space graph as a vector

• Captures the “shape” of the dependence, but loses where the dependence originates

• Distance vector for this iteration space: (2)

• Each dependence is 2 iterations forward



2-D distance vectors
• Distance vector for this graph:

• (1, -2)

• +1 in the i direction, -2 in the j 
direction

• Crucial point about distance vectors: 
they are always “positive”

• First non-zero entry has to be 
positive

• Dependences can’t go backwards in 
time



More complex example
• Can have multiple distance vectors

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+2][j] = a[i+1][j+2] + a[i][j]



More complex example
• Can have multiple distance vectors

• Distance vectors

• (1, -2)

• (2, 0)

• Important point: order of vectors depends on 
order of loops, not use in arrays

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
a[i+2][j] = a[i+1][j+2] + a[i][j]



Problems with distance vectors

• The preceding examples show how distance vectors can precisely summarize all the 
dependences in a loop nest using just a small number of distance vectors

• Can’t always summarize as easily!

• Running example:

for (i = 0; i < N; i++)
a[2*i] = a[i];



Loss of precision
• What are the distance vectors for this code?

• (1), (2), (3), (4) ...

• Note: we have information about the length of each vector, but not about the 
source of each vector

• What happens if we try to reconstruct the iteration space graph?



Loss of precision
• What are the distance vectors for this code?

• (1), (2), (3), (4) ...

• Note: we have information about the length of each vector, but not about the 
source of each vector

• What happens if we try to reconstruct the iteration space graph?



Direction vectors

• The whole point of distance vectors is that we want to be able to succinctly capture the 
dependences in a loop nest

• But in the previous example, not only did we add a lot of extra information, we still had an 
infinite number of distance vectors

• Idea: summarize distance vectors, and save only the direction the dependence was in

• (2, -1) → (+, –)

• (0, 1) → (0, +)

• (0, -2) → (0, –) (can’t happen; dependences have to be positive)

• Notation: sometimes use ‘<‘ and ‘>’ instead of ‘+’ and ‘–’



Why use direction vectors?

• Direction vectors lose a lot of information, but do capture some useful information

• Whether there is a dependence (anything other than a ‘0’ means there is a dependence)

• Which dimension and direction the dependence is in

• Many times, the only information we need to determine if an optimization is legal is 
captured by direction vectors

• Loop parallelization

• Loop interchange


