
Example Loop Optimizations



Loop fusion

• Merge two different loops together into a single loop

• Why is this useful? Improve reuse distance!

• May not always be legal

for (i = 0; i < N; i++)
a[i] = 2 * a[i]

for (i = 0; i < N; i++)
b[i] = a[i]

for (i = 0; i < N; i++)
a[i] = 2 * a[i]
b[i] = a[i]

fusion



Loop interchange

• Change the order of a nested loop

• This is not always legal – it changes the order that 
elements are accessed!

• Why is this useful?

• Consider matrix-vector multiply when A is 
stored in column-major order (i.e., each 
column is stored in contiguous memory) for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
y[i] += A[i][j] * x[j]

y = Ax



Loop interchange

• Change the order of a nested loop

• This is not always legal – it changes the order that 
elements are accessed!

• Why is this useful?

• Consider matrix-vector multiply when A is 
stored in column-major order (i.e., each 
column is stored in contiguous memory)

for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
y[i] += A[i][j] * x[j]



Loop interchange
• What about x and y vectors?

• Both vectors have reuse: each element is used 
N times

• Elements of vector indexed by outer loop has 
good reuse distance (same element used for each 
iteration of the inner loop)

• Elements of vector index by inner loop has bad 
reuse distance (same element is accessed after all 
other elements in the vector are accessed)

• Either have good reuse on the x vector and bad 
reuse on the y vector or vice versa

for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
y[i] += A[i][j] * x[j]



Loop interchange

• Change the order of a nested loop

• This is not always legal – it changes the order that 
elements are accessed!

• Why is this useful?

• Consider matrix-vector multiply when A is 
stored in column-major order (i.e., each 
column is stored in contiguous memory)

for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
y[i] += A[i][j] * x[j]



Loop tiling

• Also called “loop blocking”

• One of the more complex loop transformations

• Goal: break loop up into smaller pieces to get 
spatial and temporal locality

• Create new inner loops so that data accessed 
in inner loops fit in cache

• Also changes iteration order, so may not be legal 

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
y[i] += A[i][j] * x[j]



Loop tiling

• Also called “loop blocking”

• One of the more complex loop transformations

• Goal: break loop up into smaller pieces to get 
spatial and temporal locality

• Create new inner loops so that data accessed 
in inner loops fit in cache

• Also changes iteration order, so may not be legal 

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)
for (jj = 0; jj < N; jj += B)
for (i = ii; i < ii+B; i++)
for (j = jj; j < jj+B; j++)
y[i] += A[i][j] * x[j]


