
High-Level Loop Optimizations



Caches

• Modern machines have very large main memories 

• Making large, inexpensive memory means access is 
quite slow (hundreds of cycles to perform a load) 

• Fast memory is both small and expensive 

• But programs perform lots of loads and stores 

• Idea: add small, fast memory to hold some of your data 
→ a cache 

CPU

Main Memory



Caches

• Modern machines have very large main memories 

• Making large, inexpensive memory means access is 
quite slow (hundreds of cycles to perform a load) 

• Fast memory is both small and expensive 

• But programs perform lots of loads and stores 

• Idea: add small, fast memory to hold some of your data 
→ a cache 

CPU

Main Memory

Data Cache



Cache behavior
• Caches keep recently used data in fast memory

• Caches use least recently used policy for keeping data: 
data that hasn’t been used in a while is kicked out of cache 

• Intuition: program accessed a piece of data, so it is likely to 
access it again soon

• A program that reuses data quickly has good temporal locality 
→ data likely to still be in cache 

• A program that doesn’t reuse data quickly has bad temporal 
locality → data likely to not be in cache 

• The same set of accesses in a different order can have different 
behavior depending on how good the locality is 

CPU

Main Memory

Data Cache



Reuse distance
• How can we measure how good the locality in a program is? reuse distance

• Consider a stream of accesses: 

• For each access, count how many other memory locations have been accessed since the last time this 
location has been accessed 

• Important: not number of accesses — number of unique other locations 

- - 1 1 - - 2 3 
A B A B C D B A



Locality using reuse distance
• On a memory access you can get a 

• Cache miss: first time a location is touched (cold miss) or because a location has not 
been touched in a while (capacity miss)

• Cache hit: location has been touched recently, so is still in cache

• Can also consider spatial locality — caches move memory around at the granularity 
of cache lines, so if A and B are next to each other in memory, accessing B right after 
A will result in a cache hit 

• Reuse distance predicts cache hits: if reuse distance of an access is less than the number 
of elements the cache can hold, likely to be a cache hit 



Optimization for locality
• A program can have good or bad locality 

• Can rearrange the order of accesses to reduce reuse distance, and hence get better locality 

- - 1 1 - - 2 3 
A B A B C D B A

vs

- 0 0 - 0 - -
A A A B B C D



High level loop optimizations

• Many useful compiler optimizations require restructuring loops or sets of loops

• E.g., change the order of a nested loop (interchange), running a loop in 
parallel (parallelization)

• Do not necessarily reduce the number of instructions; just changes when 
instructions are executed 

• Goal: leverage hardware features like caches to execute instructions faster 

• Reschedule computations to improve reuse distance 


