
Strength Reduction



Strength reduction

• Like strength reduction peephole optimization

• Peephole: replace expensive instruction like a * 2 
with a << 1

• Replace expensive instruction, multiply, with a 
cheap one, addition

• Applies to uses of an induction variable

• Opportunity: array indexing

for (i = 0; i < 100; i++)
A[i] = 0;

i = 0;
L2:if (i >= 100) goto L1

j = 4 * i + &A
*j = 0;
i = i + 1;
goto L2

L1:



Strength reduction

• Like strength reduction peephole optimization

• Peephole: replace expensive instruction like a * 2 
with a << 1

• Replace expensive instruction, multiply, with a 
cheap one, addition

• Applies to uses of an induction variable

• Opportunity: array indexing

for (i = 0; i < 100; i++)
A[i] = 0;

i = 0; k = &A;
L2:if (i >= 100) goto L1

j = k;
*j = 0;
i = i + 1; k = k + 4;
goto L2

L1:



Induction variables

• A basic induction variable is a variable i

• whose only definition within the loop is an assignment of the form i = i ± c, where c is loop invariant

• Intuition: the variable which determines number of iterations is usually an induction variable

• A mutual induction variable j may be

• defined once within the loop, and its value is a linear function of some other induction variable i such that

• j = c1 * i ± c2 or j = i/c1 ± c2

• where c1, c2 are loop invariant

• A family of induction variables include a basic induction variable and any related mutual induction variables



Strength reduction algorithm

• Let j be an induction variable in the family of the basic induction variable i, such that j = c1 * i + c2

• Create a new variable j’

• Initialize in preheader 

j’ = c1 * i + c2

• Track value of i. After i = i + c3, perform

j’ = j’ + (c1 * c3)

• Replace definition of j with 

j = j’

• Key: c1, c2, c3 are all loop invariant (or constant), so computations like (c1 * c3) can be moved outside loop



Linear test replacement

• After strength reduction, the loop test may be the 
only use of the basic induction variable

• Can now eliminate induction variable altogether

• Algorithm

• If only use of an induction variable is the loop 
test and its increment, and if the test is always 
computed

• Can replace the test with an equivalent one 
using one of the mutual induction variables

i = 2
for (; i < k; i++)
j = 50*i
... = j

i = 2; j’ = 50 * i
for (; i < k; i++, j’ += 50)
... = j’

i = 2; j’ = 50 * i
for (; j’ < 50*k; j’ += 50)
... = j’

Strength reduction

Linear test replacement



Loop unrolling
• Modifying induction variable in each iteration can 

be expensive

• Can instead unroll loops and perform multiple 
iterations for each increment of the induction 
variable

• What are the advantages and disadvantages?

• fewer instructions executed, more 
opportunities for CSE, strength reduction, ILP 
etc.

• code size increase, more i-cache pressure, can 
confuse allocator

for (i = 0; i < N; i++)
A[i] = ...

for (i = 0; i < N; i += 4)
A[i] = ...
A[i+1] = ...
A[i+2] = ...
A[i+3] = ...

Unroll by factor of 4



next: high-level loop optimization


