Strength Reduction

Strength reduction

for (1 =0; 1 < 100; 1++)

* Like strength reduction peephole optimization Alll = 0;
®* Peephole: replace expensive instruction like a * 2
with a << |
* Replace expensive instruction, multiply, with a i=0:
cheap one, addition L2:if (i >= 100) goto L1
. | | |] =4 *1 + &A
* Applies to uses of an induction variable *j = Q;

1L =1+ 1;
goto LZ
L1:

* Opportunity: array indexing

Strength reduction

for (1 =0; 1 < 100; 1++)

* Like strength reduction peephole optimization Alll = 0;
®* Peephole: replace expensive instruction like a * 2
with a << |
* Replace expensive instruction, multiply, with a i =0; k = &A:
cheap one, addition L2:if (i >= 100) goto L1
Tk
* Applies to uses of an induction variable >:|l< i =0;
* Opportunity: array indexin L=1+ 15 k=lk+4;
PP Y Y & goto L2

L1:

Induction variables

® A basic induction variable is a variable i
* whose only definition within the loop is an assignment of the form i =i + ¢, where c is loop invariant
* Intuition: the variable which determines number of iterations is usually an induction variable
* A mutual induction variable j may be
* defined once within the loop, and its value is a linear function of some other induction variable i such that
* j=cl*ixc2orj=ilcl £c2
* where cl, c2 are loop invariant

* A family of induction variables include a basic induction variable and any related mutual induction variables

Strength reduction algorithm

* Letjbe an induction variable in the family of the basic induction variable i, such that j = cl *i + c2
®* Create a new variable j’
* Initialize in preheader
P =cl*i+c2
®* Track value of i. After i =i + c3, perform
P =7+ (cl *c3)

* Replace definition of j with

*9

] =

* Key:cl, c2, c3 are all loop invariant (or constant), so computations like (cl * c3) can be moved outside loop

Linear test replacement

1 =2
* After strength reduction, the loop test may be the f§r=(§®ll< G 1)
only use of the basic induction variable e =]
* Can now eliminate induction variable altogether
Strength reduction
* Algorithm |
* If only use of an induction variable is the loop }0: %’ %,<=k°®ii+1 i’ 4= 50)
test and its increment, and if the test is always o _ i’ ’ ’
computed
* Can replace the test with an equivalent one Linear test replacement

using one of the mutual induction variables

Loop unrolling

Modifying induction variable in each iteration can
be expensive

Can instead unroll loops and perform multiple
iterations for each increment of the induction
variable

What are the advantages and disadvantages!

* fewer instructions executed, more
opportunities for CSE, strength reduction, ILP
etc.

® code size increase, more i-cache pressure, can
confuse allocator

for (1

O; 1 < N; 1++)

Al1] = ...

for (1

(1+1]
1+2_

> > > >

1+3

\4

Unroll by factor of 4

O; 1. < N; 1 += 4)

1] = ...

next: high-level loop optimization

