
Loop Invariant Code Motion



Loop invariant code motion

• Idea: some expressions evaluated in a loop never change; they are loop invariant

• Can move loop invariant expressions outside the loop, store result in temporary 
and just use the temporary in each iteration

• Why is this useful?

• Think of this as CSE



Identifying loop invariant code

• To determine if a statement

s: a = b op c

is loop invariant, find all definitions of b and c that reach s

• A statement t defining b reaches s if there is a path from t to s where b is not re-defined

• s is loop invariant if both b and c satisfy one of the following

• it is constant

• all definitions that reach it are from outside the loop

• only one definition reaches it and that definition is also loop invariant



Moving loop invariant code

• Just because code is loop invariant doesn’t mean we can move it!

• We can move a loop invariant statement a = b op c if

• The statement dominates all loop exits where a is live

• There is only one definition of a in the loop

• a is not live before the loop

• Move instruction to a preheader, a new block put right before loop header

a = 5;
for (...)
if (*)
a = 4 + c

b = a

for (...)
if (*)
a = 5

else
a = 6

do
if (*)
break

a = 5
while (*)
c = a;

for (...)
a = b + c



next: strength reduction


