
Loop Optimizations



Why loops?
• Loop Constructs

• while …

• do ... while ...

• for ...

• Why are loops important?

• 90/10 rule

• 90% of execution time, 10% of code (loop)



Agenda

• Low level loop optimizations

• Code motion

• Strength reduction

• Unrolling

• High level loop optimizations

• Loop fusion

• Loop interchange

• Loop tiling



Loop optimization

• Low level optimization

• Moving code around in a single loop

• Examples: loop invariant code motion, strength reduction, loop unrolling

• High level optimization

• Restructuring loops, often affects multiple loops

• Examples: loop fusion, loop interchange, loop tiling



Low level loop optimizations

• Affect a single loop

• Usually performed at three-address code stage or later in compiler

• First problem: identifying loops

• Low level representation doesn’t have loop statements!



Identifying loops
• First, we must identify dominators

• Node a dominates node b if every possible execution path that gets to b must
pass through a

• Many different algorithms to calculate dominators – we will not cover how this 
is calculated

• Dataflow analysis?

• A back edge is an edge from b to a when a dominates b

• The target of a back edge is a loop header



Natural loops

• Will focus on natural loops – loops that arise in 
structured programs

• A node n is in a natural loop with header h

• n must be dominated by h

• There must be a path in the CFG from n to h 
through a back-edge to h

• What are the back edges in the example to the right? 
The loop headers? The natural loops?



next: loop invariant code motion


