
Flow-Insensitive Pointer Analysis

drawbacks of flow-sensitivity

• Flow-sensitive pointer analysis is expensive

• Keep track of a different points-to graph at each program point

• Can take a while for analysis to converge

• Large storage requirements for large programs

• Can do flow-insensitive analysis instead

flow-insensitive analysis

• Key idea: ignore control flow

• All statements in a function dumped into a single list

• No loops, branching

• Compute a single points-to graph that is valid for the entire function regardless of when and how
often statements are executed

weak updates
• Because we are computing a single points-to graph, and we do not know when a given statement

executes, we never remove information

• Replace all strong updates with weak updates

• Update graph in place

address of
x = & y 𝐺′ = 𝐺 with 𝑝𝑡 x ∪← {y}

X Y Z

X Y Z

Andersen’s algorithm
• Compute points-to graph by formulating this as a series of set constraints

• Solve set constraints (same fix point algorithms we’ve seen before!)

• Only trick: when points-to sets are updated, loads and stores generate new constraints!

address of
x = & y

copy
x = y

load
x = * y

store
* x = y

y ∈ 𝑝𝑡 x 𝑝𝑡 x ⊇ 𝑝𝑡 y

∀𝑎 ∈ 𝑝𝑡 y . 𝑝𝑡 x ⊇ 𝑝𝑡 a ∀𝑎 ∈ 𝑝𝑡 x . 𝑝𝑡 a ⊇ 𝑝𝑡 y

adding complexity

• What if you have multiple functions? Need to do interprocedural analysis

• Simple approach we’ve seen before: assume a function can do anything

• What can you do instead?

• Execute interprocedurally

• Propagate points-to information from caller to callee, back from callee to caller

interprocedural analysis
•We won’t really cover this, but there are two basic approaches

• Context-sensitive: treat each function call separately, like in a real execution

• Essentially, inline callee into caller

•What do we do for recursion? Need to approximate

• Pros: accurate. Cons: slow

• Context-insensitive: merge information from call sites of each function

• Essentially, represent each function once in a control flow graph

• Merge information from multiple callers within the callee

• Pros: faster. Cons: inaccurate (information can flow from one caller to another!)

foo

baz

bar

baz

foo bar

baz

dealing with the heap

• What about heap allocations?

• Simple approach: one node represents “the heap.”

• x = malloc(…) makes x point to “the heap.”

• More complicated approach: a different heap node for each malloc site

• Even more complicated: shape analysis to reason about how heap nodes point to each other

